

Network Control Language Programming
Guide

r5

CA SOLVE:Access™ Session

Management

This documentation and any related computer software help programs (hereinafter referred to as the "Documentation") are for
your informational purposes only and are subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be used or
disclosed by you except as may be permitted in a separate confidentiality agreement between you and CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print a reasonable number of copies of the Documentation for internal use by you and your employees in connection with that
software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print copies of the Documentation is limited to the period during which the applicable license for such software
remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify in writing to CA
that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY LOSS OR
DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS,
LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF
THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and is not
modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with "Restricted Rights." Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2010 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact Technical Support

For your convenience, CA Technologies provides one site where you can access
the information you need for your Home Office, Small Business, and Enterprise
CA Technologies products. At http://ca.com/support, you can access the
following:

■ Online and telephone contact information for technical assistance and
customer services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Provide Feedback

If you have comments or questions about CA Technologies product
documentation, you can send a message to techpubs@ca.com.

If you would like to provide feedback about CA Technologies product
documentation, complete our short customer survey, which is available on the
CA Support website at http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 23

About this Guide .. 23

What You Need to Know Before Using NCL ... 23

Related Documentation ... 24

Chapter 2: About Network Control Language 25

What Is Network Control Language (NCL)? .. 26

Create NCL Procedures .. 27

Check NCL Syntax ... 27

Test NCL Procedures .. 28

Debug an NCL Procedure .. 29

Invoke and Cancel NCL Procedures ... 29

Invoke NCL Procedures .. 29

Cancel NCL Procedures .. 30

Exit OCS During Execution ... 30

Control Runaway Loops ... 30

List Procedure Names ... 31

List the Contents of NCL Procedures .. 31

Chapter 3: NCL Concepts 33

Where Does NCL Execute? ... 33

What Is an NCL Procedure? .. 33

What Is an NCL Process? .. 34

Nesting ... 34

NCL Process Identifier ... 35

NCL Processing Region .. 35

NCL Processing Environment ... 36

Execute NCL Processes Serially ... 36

Execute NCL Processes Concurrently ... 37

Dependent Processing Environment .. 38

&INTCMD Verb ... 38

Explicit NCL Process Execution ... 39

Implicit NCL Execution ... 39

6 Network Control Language Programming Guide

System Level Procedures .. 40

MSGPROC Procedure .. 40

Issue Commands from an NCL Process.. 41

Inline Command Execution .. 41

Dependent Command Execution ... 42

Review of Message Delivery Rules .. 42

NCL Processes and the Remote Operator Facility (ROF) .. 43

Message Flow on a ROF Session .. 44

Communication Between Processes .. 45

INTQUE Command .. 45

Dependent Request Queue .. 46

Request and Response Disciplines .. 47

INTQUE Across ROF Sessions ... 48

Scope of the NCL Processing Region .. 48

Find Out Which NCL Processes Are Executing ... 49

Chapter 4: NCL Statement Types and Syntax 51

NCL Statements ... 51

Format of NCL Statements ... 51

Statement Continuations .. 52

Variable Substitution .. 53

NCL Conventions and Syntax ... 54

Comments in NCL Procedures.. 55

Comments on NCL Statements ... 55

Displayable Stand-alone Comment Lines .. 56

Highlighted Key Words in Comment Lines... 56

Non-displayable Stand-alone Comment Lines ... 57

Suppression Character... 57

Label Statements ... 58

Label Variables .. 59

Undefined Labels ... 59

Duplicate Labels .. 60

Minimize Labels ... 61

Verb Statements .. 61

Built-in Function Statements ... 62

Assignment Statements ... 63

Arithmetic .. 63

Command Statements... 64

Contents 7

Chapter 5: Variables, Substitution, and Assignment 65

What Is a Variable? ... 65

Variable Types .. 66

System Variables .. 66

User Variables .. 66

Global Variables .. 67

Parameters ... 68

DBCS Device Support .. 69

Variable Substitution .. 69

Undefined Variable Substitution ... 71

Complex Variable Substitution ... 72

Align Substitution Data .. 73

Lowercase Data ... 74

Debugging Procedures .. 74

Set Variables to a Particular Value .. 75

Explicit Assignment: Assignment Statement ... 75

Complex Variables in Assignment Statements ... 76

Implicit Assignment: Using &ASSIGN ... 77

Implicit Assignment: Using Other NCL Verbs .. 78

NCL Table Manipulation ... 79

Vartable Facility... 80

&ZFDBK Values ... 81

&VARTABLE Manipulation Facilities .. 82

Shared Table Updating .. 83

Retrieval Techniques .. 87

&VARTABLE Syntax Descriptions ... 88

Mirrored Vartables .. 89

Differences Between Mirrored and Standard Vartables .. 89

Update Mirrored Vartables .. 90

AOM Attributes of Mirrored Vartables .. 91

Chapter 6: Arithmetic in NCL 95

About Arithmetic in NCL ... 95

Integer Arithmetic .. 96

Real Number Arithmetic ... 96

&CONTROL REAL .. 97

Comparisons With Real Numbers .. 97

Arithmetic Expressions .. 98

8 Network Control Language Programming Guide

Arithmetic Operators.. 99

Divide (REAL Arithmetic) .. 100

Divide Quotient (INTEGER Arithmetic) ... 100

Divide Remainder (INTEGER Arithmetic) ... 100

Divide by Zero ... 101

Precedence of Operators ... 101

Parentheses to Control Evaluation Order .. 102

NCL Substitution and Expressions ... 103

Signed Numbers ... 103

Format Numbers ... 104

Chapter 7: Designing Interactive Panels (Panel Services) 105

About Panel Services ... 105

Logical Screen Manager .. 106

Create or Change Panels .. 106

Invoke Full-screen Panels ... 107

Fixed and Variable Data in Panels ... 108

Panel Design ... 108

Design Guidelines .. 108

Field Characters .. 109

Field Types .. 110

Sample Panels ... 111

Override the Input Attribute .. 112

Control How Long a Panel is Displayed ... 113

Analyze Panel Input .. 114

Monitor Panel Return Codes .. 116

Handle Errors .. 118

Internal Validation ... 121

Find Out Which Input Fields Have Changed .. 126

Output Padding and Justification .. 127

Field Level Justification ... 127

Variable Level Justification .. 129

Input Padding and Justification ... 130

Process with Light Pens/Cursor Select ... 132

Mix SPD Fields with Normal Input Fields ... 133

Hardware Restrictions .. 133

Intercept Function Keys .. 133

Panels on Different Screen Sizes .. 135

Contents 9

&LUROWS Variable .. 135

&LUCOLS Variable .. 135

&CURSCOL Variable .. 136

&CURSROW Variable ... 136

Determine the Field Location of the Cursor .. 136

Control Cursor Positioning .. 137

Cursor Positioning Hierarchy .. 138

Dynamically Alter Panel Designs (PREPARSE) ... 138

Dynamic PREPARSE Option ... 141

Static PREPARSE Option .. 141

Considerations When Using PREPARSE .. 142

Display Function Key Prompts ... 142

Control the Formatting of Input Fields ... 143

Allow Long Field Names in Short Fields .. 144

Retrieve Panels from Panel Libraries .. 144

Display Panels on OCS Windows .. 145

NCL Processes Competing Against OCS for the OCS Window 145

Competition Between NCL Processes for an NCL Environment Window 146

Asynchronous Panels ... 147

Asynchronous Operation Concepts .. 147

Invoke an Asynchronous &PANEL Operation ... 148

Control Input Field Initialization ... 151

Manage I/O Contention .. 152

Panel Control Statements .. 152

#ALIAS Control Statement—Define Alternative Name for Input Variables 153

#ERR Control Statement—Define Action Taken During Error Processing 155

#FLD Control Statement—Define or Modify a Panel Definition Field Character 158

#NOTE Control Statement—Allow User Comments in a Panel Definition 174

#OPT Control Statement—Define Panel Processing Options 174

#TRAILER Control Statement—Place Lines at Screen End 182

Chapter 8: NCL File Processing 185

UDB File Formats .. 185

Mapped Format Files ... 185

Unmapped Format Files .. 186

Delimited Format Files ... 188

Multiple File and Alternate Index Support ... 188

Work with UDBs ... 188

10 Network Control Language Programming Guide

Allocate UDBs.. 189

Prepare to Use a UDB .. 190

UDB Initialization .. 190

Control UDB Performance and Resource Usage .. 191

Add Records to a UDB .. 192

SYSOUT Considerations ... 193

Format SYSOUT Output ... 193

Update Records in a UDB ... 194

Delete Records from a UDB ... 195

Retrieve Records from a UDB ... 197

Restrictions When Using UDBs .. 198

Create UDBs with Alternate Indexes ... 199

VSAM Considerations for Alternate Indexes .. 200

Key Structures and Alternate Indexes .. 201

Retrieve Data Using Alternate Indexes ... 202

Control UDB Availability .. 205

Work with Files .. 206

Logical File Identifiers .. 207

Release File Processing Resources ... 208

Display File Information .. 209

Specify the File Processing Mode .. 209

Specify the File Key ... 210

Work with Data .. 211

Data Set Positioning and Generic Retrieval ... 212

Mapped Format Files: Data Representation .. 213

Unmapped Format Files: Data Representation ... 214

&FILE GET Statement and Unmapped Format UDBs .. 215

Data Conversion and Unmapped Format UDBs ... 216

Key and Data Differentiation .. 217

Offline Processing of Data Sets .. 220

Back Up Online Data Sets ... 220

Chapter 9: System Level Procedures 223

System Level Procedures ... 223

Activity Log .. 224

VTAM Messages ... 224

EASINET Terminal Control .. 225

OCS Window Traffic Handling ... 225

Contents 11

Message Profile Concept ... 226

Intercept Solicited and Unsolicited VTAM Messages (PPOPROC Procedures) 227

Filter Messages Seen by PPOPROC .. 228

Modify the Message Definition Table: DEFMSG Command 228

Message Filtering: Solicited Messages ... 228

Message Filtering: Unsolicited Messages .. 229

Design a PPOPROC Procedure ... 229

Messages from PPOPROC ... 229

PPOPROC Statements .. 230

Test PPOPROC ... 230

PPOPROC Prerequisites ... 231

Intercept OCS Messages (MSGPROC Procedures) ... 231

MSGPROC Statements .. 232

Design MSGPROC Procedures ... 233

Messages from MSGPROC .. 233

Test MSGPROC ... 234

User ID Considerations for System Level Procedures.. 234

Chapter 10: Implementing User Programs 235

About the SUBSYS Facility .. 235

Use &CALL Without SUBSYS... 235

Use &CALL With SUBSYS .. 236

Extensions to &CALL.. 236

Uses of SUBSYS .. 236

Send Parameter Lists to the Subsystem .. 237

Control Subsystems .. 237

Define a Subsystem .. 238

Start a Subsystem .. 238

Stop a Subsystem .. 238

Delete a Subsystem .. 239

Reload the Program .. 239

Display the Status of a Subsystem ... 239

Write a SUBSYS Program ... 240

Subsystem Program Considerations ... 240

Write a Subsystem Program in High-level Languages ... 242

SUBSYS Callback API.. 243

Function Code 0—Queue a Message to the INTCMD Environment of an NCL Process 244

Function Code 4—Send a Message to an NCL Process... 244

12 Network Control Language Programming Guide

Function Code 8—Send a Message to MONITOR Receivers 245

Return Codes .. 245

Chapter 11: Synchronizing Access to Resources 247

Use NCL to Synchronize Access to Resources ... 247

Resources and Resource Locks .. 248

Resource Groups ... 249

Primary Names .. 250

Minor Names .. 250

Resource Name Hierarchy .. 250

Resource Naming Conventions .. 251

&LOCK Verb ... 251

Wait for Access to a Resource ... 252

Alter the Status of a Resource Lock .. 252

Associate Text with a Resource Lock ... 253

Resources as Semaphores .. 254

Chapter 12: NCL Debug Facility 255

Overview .. 255

Security ... 256

NCL Debug Facilities .. 257

NCL Debug Facility ... 257

Start and Stop an NCL Debug Session .. 258

Control the Execution of NCL Processes ... 259

Statement Breakpoints ... 260

Verb Breakpoints .. 260

Variable Breakpoints ... 260

Procedure ENTRY Breakpoints .. 260

Procedure EXIT Breakpoints... 261

BREAKPOINT Command .. 261

Sample Debug Session .. 262

Display and Modify the Contents of NCL Variables .. 263

List Procedure and Subroutine Nesting Levels .. 263

Display the Executed Source .. 263

Receive NCL Trace Output .. 263

Contents 13

Chapter 13: About Mapping Services 267

What Is Mapping Services? ... 267

Mapping Services Processing ... 268

MDOs ... 268

Maps .. 269

NCL Procedures .. 269

Mapping Concepts ... 270

Data Sources .. 270

Naming ... 271

Transfer MDOs Between Nested NCL Procedures ... 272

Mapping Services, Mapping Support, and NCL Processing ... 272

Connection to Mapping Support .. 273

Sourcing Data .. 273

Manipulate and Extract Data ... 274

Use a Map in NCL Processing ... 274

Chapter 14: Using Mapping Services 277

Overview .. 277

MDO Behavior and NCL Processing Conventions ... 278

Input Operations on an MDO ... 281

Output Operations from an MDO ... 282

&ASSIGN Verb ... 283

Create and Delete MDOs ... 283

Assign Data into an MDO ... 284

Query MDO Components ... 289

NCL Reference, Type Checking, and Data Behavior ... 293

BOOLEAN Type .. 294

INTEGER Type.. 294

BIT STRING Type ... 295

OCTET STRING Type .. 297

HEX STRING Type .. 298

NULL Type ... 298

OBJECT IDENTIFIER Type .. 299

ObjectDescriptor Type .. 299

REAL Type ... 300

ENUMERATED Type .. 301

NumericString Type .. 302

PrintableString Type .. 302

14 Network Control Language Programming Guide

TeletexString Type ... 303

VideotexString Type .. 303

IA5String Type ... 303

UTCTime Type ... 304

GeneralizedTime Type .. 304

GraphicString Type ... 305

VisibleString Type .. 305

GeneralString Type ... 306

Type Conversion for MDO Assignment .. 306

Graphic-oriented Source Type .. 308

Numeric-oriented Source Types ... 309

Transparent Source Types .. 310

Chapter 15: NDB Concepts 311

What Is an NDB? ... 312

Work with NDBs ... 313

Uses of NDBs .. 313

Differences Between NDBs and UDBs .. 313

NDB Types ... 315

NDB Structure ... 315

Control Record ... 316

Journal Control Record ... 316

Journal Data Records ... 316

Field Definition Records .. 316

Key Statistics Records .. 316

Key Records ... 316

RID-Sequence Key Records.. 317

Data Records .. 317

Record ID.. 317

RID Reuse ... 318

Alerts for VSAM Monitoring .. 318

NDB Data Formats ... 319

Null Values and Null Fields .. 320

Rules for Null Fields .. 321

NDB Transaction Management: Database Protection ... 322

NDB Journaling .. 323

Continuous Availability ... 324

NDB Recovery ... 324

Contents 15

How to Respond to an Alert for File Size or File Full ... 324

Fix a Corrupted NDB ... 325

Chapter 16: NetMaster Database Administration 327

How to Create an NDB ... 327

Define VSAM Data Set .. 328

Calculate Key Length ... 328

Calculate Record Length .. 329

Allocate the VSAM Data Set ... 330

Open the VSAM Data Set ... 330

Create the NDB .. 331

Start the Database ... 332

Insert Field Definitions ... 332

Load Initial Data.. 333

Delete an NDB ... 334

Delete All Data in an NDB ... 335

Alter Field Definitions in an NDB .. 335

Add Field Definitions ... 336

Delete Field Definitions ... 336

Update a Field Definition ... 337

Back Up an NDB ... 338

Restore an NDB .. 338

Monitor NDB Activity... 339

Monitor NDB Performance ... 340

Improve Performance by Using LOAD MODE ... 340

Check an NDB for Consistency .. 341

Multiple System Access to an NDB .. 341

How to Implement NDB Journaling .. 342

Define Two Journal Data Sets ... 342

Allocate Data Sets to the Product Region .. 342

Make Duplicates of the NDBs ... 343

Add the Duplicates to the Batch Forward Recovery JCL 343

Start the NDBs ... 344

NDB Journal Swapping.. 345

Chapter 17: Using &NDB Verbs 347

Relationship Between &FILE and &NDBxxx Verbs .. 347

Protect Your Data Values with &NDBQUOTE ... 348

16 Network Control Language Programming Guide

Preserve Lowercase Data ... 348

Define and Delete Fields in an NDB .. 348

Access an NDB ... 349

EASINET Considerations .. 349

Close an NDB .. 350

Work with NDBs ... 350

Add Records to an NDB ... 350

Update Records in an NDB .. 351

Delete Records from an NDB .. 353

Retrieve Records from an NDB .. 354

Notes on Sequential Retrieval... 359

KEEP=YES on &NDBSEQ... 359

&NDBSEQ RESET ... 359

&NDBGET DIR= and SKIP= .. 360

Read by Sparse Keys .. 360

Obtain Information About an NDB .. 362

Change NDB NCL Processing Options .. 364

Put It All Together—Unload or Reload an NDB ... 365

Define an Unload File... 366

Open the Database and Output Unload File .. 366

Unload Database Level Information ... 367

Obtain and Unload Field Level Information .. 367

Build a Format for Reading Data... 368

Define the Sequence for Reading .. 369

Unload the Data ... 369

Unload Subsets Using Sparse Keys ... 371

Reload an NDB from an Unload File ... 371

Open the Database and the Input Unload File .. 372

Check Database Attributes .. 373

Build Field Definitions .. 374

Load the Data .. 374

Chapter 18: Using &NDBSCAN Statements 377

Scan Processing .. 377

Display the Generated Scan Action Table .. 378

Process Scan Results ... 378

Control &NDBSCAN Resource Usage .. 380

Scan Expressions ... 380

Contents 17

Reserved Words ... 382

Null Fields ... 383

Field to Field Comparisons .. 383

Use &NDBQUOTE to Protect Special Characters .. 383

Search for Lowercase Data .. 384

CONTAINS ... 385

LIKE ... 385

Use the Results of a Previous &NDBSCAN .. 387

SQL-like Operators ... 388

Efficient Use of &NDBSCAN ... 389

Chapter 19: Using Advanced Program-to-Program Communication 391

Advanced Program-to-Program Communication (APPC) .. 391

APPC Conversations .. 392

LU6.2 Verb Set ... 393

&APPC Verb ... 393

Conversation States .. 394

Conversation Processing .. 395

Return Codes and System Variables ... 395

Conversation Allocation .. 397

Transaction Identifier... 397

Destination Selection ... 397

Allocation and Sessions ... 398

Set Program Initialization Parameters ... 398

Allocation Completion .. 399

Attach a Procedure .. 399

Client/Server Terminology .. 399

Execution Environment ... 399

Access Program Initialization Parameters .. 400

Attach Processing .. 400

Send Operations ... 400

Send Data ... 400

Data Mapping Support ... 401

Data Mapping for NCL Tokens ... 401

Data Mapping and Mapping Services .. 402

Send Data When Data Mapping Is Not Supported .. 403

Request Confirmation of Data Sent .. 403

Force Data Transmission .. 403

18 Network Control Language Programming Guide

Switch State from Send to Receive .. 404

Receive Operations .. 404

Receive Data ... 405

Receive Data into NCL Tokens ... 406

Receive Data into an MDO .. 407

Respond to a Confirmation Request ... 408

Receive a Send Indication ... 408

Receive a Deallocation Indication ... 408

Error Processing ... 409

Conversation Deallocation .. 410

Sample Conversations .. 410

&APPC Return Code Information .. 411

Application Design ... 412

Chapter 20: Advanced Program-to-Program Communication Extensions 413

APPC Extended Verb Set .. 414

APPC Transactions ... 415

START Transaction-Remote Process Start .. 416

Remote Procedure Call (RPC) Transaction .. 417

ATTACH Transaction-Allocate a Procedure ... 418

CONNECT Transaction-Connect to an Active Process .. 418

APPC Client/Server Processing .. 419

Server Processes ... 420

Client/Server Connection Mode ... 421

Automatic Connection Mode ... 422

Notification Mode.. 423

Rejection Mode .. 424

Transfer a Conversation .. 424

Chapter 21: Using APPC to Communicate with Other Systems 425

About APPC ... 425

Transaction Programs and Conversations .. 426

Session Polarity .. 427

Conversation Types .. 427

APPC Option Sets .. 428

Supported APPC Products .. 430

Define APPC Links .. 430

Define Dynamic APPC Links ... 430

Contents 19

APPC Table Requirements .. 431

How APPC Control Tables Interact ... 432

Define APPC Tables .. 433

Define a Transaction Control Table .. 434

Define Transactions .. 434

Define a Dynamic Link Table .. 437

Define an Option Set Control Table .. 438

Define a Mode Control Table ... 439

Implement Security for APPC Links .. 440

Link Level Security ... 441

Conversation Level Security ... 441

Run a Secured Transaction .. 442

Conversation Level Security and NCL Procedure Environments 443

Specify Security for APPC Links with Remote Systems ... 443

APPC Region Use ... 444

Activate APPC Links .. 444

Start Links Manually .. 444

Deactivate Links Manually .. 445

Start Links Automatically ... 445

Deactivate Links Automatically .. 450

APPC Link Definition Examples .. 451

Run Conversations Within the Same Domain ... 451

Run with Already Verified Security .. 452

Run an APPC Link Between a Domain and a Remote LU 453

Run a Qualified Transaction ... 455

Run a Generic Transaction .. 456

Chapter 22: Program-to-Program Interface 457

Uses of PPI .. 458

CNMNETM Module .. 458

Structure and Data Flow .. 459

Interface Details ... 460

&PPI Verb ... 461

Return Codes, System Variables, and User Variables .. 462

Determine PPI or Receiver Status ... 462

Define the Process as a Registered PPI Receiver .. 463

Send a Generic Alert ... 463

Send Data to a Receiver .. 463

20 Network Control Language Programming Guide

Receive Data ... 464

Deactivate the Receiver ID .. 464

Access PPI Facilities .. 465

Access PPI from NCL Processes .. 465

Access PPI Facilities from Other Programs ... 467

Make PPI Calls ... 467

Specify Sender and Receiver IDs ... 470

Check PPI Status ... 473

Control Receiver Programs ... 474

Check the Status of a Receiver Program ... 474

Obtain ASCB and TCB Addresses .. 476

Define and Initialize a Receiver .. 477

Deactivate a Receiver .. 479

Delete an Active Receiver ... 481

Send a Generic Alert ... 482

Control Data Buffers ... 484

Send a Data Buffer to a Receiver .. 484

Allow a Receiver to Receive a Data Buffer .. 486

Purge the Data Buffer .. 488

Wait on an ECB .. 490

Obtain a Unique Sender or Receiver ID .. 491

Receive Information from a Receiver Program ... 493

Trace the Cause of a Processing Error ... 495

Debugging Codes .. 497

Chapter 23: &NDB Verbs, Built-in Functions, and System Variables 499

&NDB Verb Summary .. 500

Built-in Function Summary ... 501

System Variable Summary .. 501

Free-form Syntax .. 502

Appendix A: NCL VSAM Techniques 505

Initialization and ACB Open Processing .. 505

Automatic Verification and Loading ... 505

RPL Handling .. 507

Obtain I/O Buffers ... 507

Concurrent Access to Multiple UDBs .. 508

Data Set Positioning and Generic Retrieval ... 508

Contents 21

Release File Processing Resources ... 509

Display File Information .. 510

Control UDB Performance .. 511

Offline Processing of Data Sets .. 512

Appendix B: System Level Procedures: Message Profiles 513

Use NCL Verbs to Retrieve Messages .. 513

System Level Procedure Environments .. 514

MSGPROC Viewed as a System Level Procedure .. 514

&INTREAD: Dependent Processing Environment.. 514

Message Handling and Processing by System Level Procedures.................................... 515

Decide What to Do with a Message ... 516

Message Profile .. 517

Message Profile Variables .. 517

&INTREAD Message Profile ... 524

&LOGREAD Message Profile .. 529

&MSGREAD Message Profile .. 533

&PPOREAD Message Profile .. 537

Appendix C: Sample APPC Conversations 541

Sample Conversations Between Two Systems .. 541

Source and Target NCL Procedures .. 541

Run the Sample APPC Conversations .. 542

Environment 1: Local Conversations ... 542

Environment 2: Same LU Conversations ... 543

Environment 3: Conversations Between Two Systems .. 543

Appendix D: NDB Response Codes 545

About Response Codes ... 545

Error Information .. 545

Response Codes ... 546

Appendix E: Using Key Ranges with an NDB 561

NDB Key Structure ... 561

Storage of Values .. 563

Suggested Key Ranges .. 564

Other Considerations .. 565

22 Network Control Language Programming Guide

Appendix F: Using NCLEX01 for NDB Security 567

NDB Open Exit Call Details .. 567

Appendix G: Using the Batch Command Interface 569

Batch Command Interface .. 569

BCI Command Types ... 570

BCI Input .. 570

BCI Output .. 571

BCILOGON Command—Establish Session .. 571

BCIDISC Command—Terminate Session ... 573

BCIEXITC Command—Control Command Exit .. 573

BCI Operation ... 574

Procedure $USERBCI ... 575

Customize $USERBCI ... 576

BCI Command Exit ... 577

Return Codes .. 577

JCL Return Codes .. 578

Appendix H: Virtual 3270 Interface 581

About the Virtual 3270 Interface .. 581

Virtual 3270 Interface .. 581

Control the Conversation ... 583

Interface to NCL Procedures .. 583

Panel Characteristics ... 584

Index 585

Chapter 1: Introduction 23

Chapter 1: Introduction

This section contains the following topics:

About this Guide (see page 23)
What You Need to Know Before Using NCL (see page 23)
Related Documentation (see page 24)

About this Guide

This guide provides information for anyone who writes or maintains NCL
procedures. It describes the principles behind NCL and includes reference
material and examples. It describes how NCL is structured and used. It describes
important components of the language and how these components are used
within NCL statements to drive your products.

The components (verbs, built-in functions, and system variables) are listed. The
manipulation of NetMaster® Databases (NDBs) is described with step-by-step
instructions for creating an NDB and examples of code to demonstrate how best
to work with NDBs.

What You Need to Know Before Using NCL

This guide assumes that your product is already installed. It assumes that you
are already familiar with basic IBM computer concepts and terminology. Specific
NCL concepts and terminology are described where appropriate in the text,
usually when first mentioned.

Related Documentation

24 Network Control Language Programming Guide

Related Documentation

This guide and the Network Control Language Reference Guide are the principal
reference documents for users of NCL.

The Network Control Language Reference Guide contains descriptions of all NCL
and &NDB verbs, built-in functions, and system variables, their syntax and
usage.

Note: For more information about administering and using the core functions of
your products, see the following resources:

■ Administration Guide

■ Reference Guide

■ Security Guide

■ User Guide

■ Online Help

Chapter 2: About Network Control Language 25

Chapter 2: About Network Control Language

This section contains the following topics:

What Is Network Control Language (NCL)? (see page 26)
Create NCL Procedures (see page 27)
Invoke and Cancel NCL Procedures (see page 29)
Exit OCS During Execution (see page 30)
Control Runaway Loops (see page 30)
List Procedure Names (see page 31)
List the Contents of NCL Procedures (see page 31)

What Is Network Control Language (NCL)?

26 Network Control Language Programming Guide

What Is Network Control Language (NCL)?

Network Control Language (NCL) is a high-level interpretive language integrated
into your products. It provides a fast, comprehensive and advanced
development tool to implement your site-specific requirements. You can use
NCL to rapidly tailor your product to suit the needs of your environment. NCL is
based on free-form statement syntax that can process both system and
user-supplied data. Data is maintained in variables that can be manipulated and
changed as required.

Collections of NCL statements, which can include system commands, are termed
procedures, and are stored in partitioned data sets (OS/VS) or CMS files (VM)
called procedure libraries. These procedure libraries can be edited and updated
while your system is operational. Each NCL procedure is a separate member
within a procedure library.

There is one principal procedure library (or concatenation of libraries) used by
your system. In addition to this system library, individual users under OS/VS can
be allocated an individual procedure library for their own use, as part of the
definition of their user ID.

NCL procedures can take many forms. They can be a simple collection of
comment statements that provide an effective means of online documentation.
They can be a collection of product commands in exactly the same format as
entered from a terminal. They can be extended to include logical
decision-making capabilities, the display of full-screen panels, and the use of file
processing capabilities.

An NCL procedure can call or nest another procedure to improve modularity.

In addition, certain NCL procedures are reserved for performing special
functions such as interfacing to unsolicited messages from VTAM (PPOPROC),
intercepting and reacting to other messages sent to the user terminal
(MSGPROC), and processing messages destined for the activity logs (LOGPROC).

Create NCL Procedures

Chapter 2: About Network Control Language 27

Create NCL Procedures

Procedures can be created while the system is operational. New procedures can
be added to the procedure library, or existing procedures modified. Any
changes made to a procedure become effective the next time the procedure is
loaded.

Procedures can be created using either system utilities or an online editor such
as TSO/ISPF or CMS Edit.

To create a new procedure you must first select a (unique) name by which the
procedure is to be identified and by which it will later be executed. The name
you select should be meaningful and where possible identify the type of
function that the procedure performs. CA recommends that you establish
naming conventions for this library to ensure consistent use of names across
operational areas.

Procedures are created as a series of individual records. Although the format of
statements within each record is flexible, certain syntax restrictions do apply.

Commands, comments, and statements can be entered in either upper or lower
case. Most commands are converted to upper case before execution.
Comments are left unchanged.

Check NCL Syntax

When you have written an NCL procedure, you can use the NCLCHECK
command to verify the syntax and structure without executing the procedure.
NCLCHECK loads and checks the procedure just as if it were to be executed and
notifies you of major syntax or structural errors in your code. Full syntax
checking does not take place until execution.

Create NCL Procedures

28 Network Control Language Programming Guide

Test NCL Procedures

To ensure that system overhead is kept to a minimum, the system attempts to
optimize NCL execution in many ways. One technique is that of sharing
concurrent requests for a procedure of the same name, in such a way that only
one copy of the procedure is loaded into storage. This technique also lets you
specify a retention queue on which a completed procedure is retained, on the
assumption that it can be reused within a short period. This eliminates the need
to perform disk I/O to bring the procedure into storage again.

For extremely high usage procedures, you can use a technique known as
preloading to ensure that the procedure remains in storage at all times,
regardless of its pattern of use. These options are selected by the LOAD
command.

Test in Production and Testing Environments

While such facilities are ideal in a production environment they can interfere
with testing. For example, you may have completed and tested a procedure and
made certain corrections and want to run a second test. Although you have
saved the corrected procedure in its library, you may notice the original errors
are still occurring. This is most likely to be caused by NCL having retained the
original procedure in storage and reused it when the second test was run. To
overcome this apparent interference with your testing, use the NCLTEST
command to signal to the system that you are in fact operating in a test mode
and do not want your procedures retained or shared and that the latest copy is
always to be loaded from the library. For more information about the NCLTEST
command, see the Online Help.

Invoke and Cancel NCL Procedures

Chapter 2: About Network Control Language 29

Debug an NCL Procedure

The NCL Debug facility is a powerful tool to assist in the debugging of NCL
procedures.

NCL Debug provides the ability to observe the execution of an NCL procedure
from an external source, that is, another environment, another user region,
window, or NCL environment. It eliminates the need for code changes to debug
a procedure. It also provides comprehensive control over the NCL procedure as
it is being executed, supporting statement stepping, alteration of variable
contents and attributes, and so on. It lets you specify criteria for debugging NCL
before it begins execution.

The NCL Debug facility is made up of a set of commands that lets you start and
stop an NCL debug session, control the execution of NCL processes, and display
and modify the contents of NCL variables. Procedure and subroutine nesting
levels can be listed and the source code that is being executed can be displayed.
NCL trace output can be received at another region, thus allowing you to view
the trace output concurrently as the debugged process executes.

Invoke and Cancel NCL Procedures

NCL procedures are invoked and canceled by using commands.

Invoke NCL Procedures

Procedures are invoked explicitly by using the EXEC and START commands, or
implicitly by certain system functions such as EASINET and timer commands.

Optionally, variable parameters can be passed to the procedure when it is
invoked. These variables are specified on the EXEC or START command following
the name of the procedure being invoked. There is no limit to the number of
variables that can be passed. Each word following the procedure name is passed
in the next available variable, numbering from &1 for the first word, &2 for the
second, and so on.

In VM systems the CMS minidisk that holds your product procedures must be
reaccessed after the procedures have been altered, so that your product locates
the new versions of the changed procedures.

Exit OCS During Execution

30 Network Control Language Programming Guide

Cancel NCL Procedures

NCL procedures can be canceled by using the FLUSH or END commands.
Generally users can cancel only their own procedures, but the system can be
configured so that authorized users can cancel any procedure. Full-screen
procedures (that is, procedures that display full-screen panels) can normally be
canceled by using the standard END function keys (F3/4 or F15/16). If function
key interception is being performed by the procedure, the responsibility of
responding correctly to the use of function keys rests with the author of the
procedure.

Exit OCS During Execution

When an Operator Console Services (OCS) operator exits OCS, any NCL
processes still executing in their OCS window are flushed without further
execution and any display lines awaiting output are discarded. Any processes
that are queued for execution by that user are also flushed. Messages are
written to the log identifying any procedures that have been flushed.

Control Runaway Loops

Protection against uncontrolled looping within a procedure is provided through
a loop control counter, maintained automatically by NCL. Runaway loop control
can be activated by using &CONTROL LOOPCHK verb. The default is &CONTROL
NOLOOPCHK, which means that runaway loop control is not in effect unless
requested.

When a procedure commences execution, a count of 1000 is assigned to this
counter. This is then decremented by one for each executed &DOEND
statement associated with an &DOWHILE or &DOUNTIL, and for each executed
&GOTO statement. If the count reaches zero, the procedure is regarded as
being in an uncontrolled loop and is automatically terminated.

List Procedure Names

Chapter 2: About Network Control Language 31

Certain events that involve operator interaction, indicating that the procedure is
not looping, cause this counter to be automatically reset. An example of this
occurs when displaying a panel using the &PANEL statement and then having to
wait for operator input before processing can continue. In such a case the value
for the loop control counter is reset to 1000. The &LOOPCTL verb is provided to
enable the user to set a new loop control limit from within the procedure for
those procedures that require more than the default value.

Note: &LOOPCTL is decremented for PPOPROC, MSGPROC, LOGPROC,
AOMPROC, or CNMPROC. However, it is reset to its full value each time a
message is read with &PPOREAD, &MSGREAD, &LOGREAD, &AOMREAD,
&CNMREAD, or &INTREAD. The loop control therefore applies only for
processing associated with one message.

List Procedure Names

Note: This applies to OS/VS only.

The SHOW EXEC command can be used to obtain an online list of the names of
procedures in the procedure library. Optionally, a specified range can be listed:

SHOW EXEC,CA,CD

or the procedures in a particular procedure library can be listed:

SHOW EXEC,ID=PROCLIB2

For more information about the SHOW EXEC command, see the Online Help.

List the Contents of NCL Procedures

The LIST command displays the contents of the nominated procedure. No
statements or commands within the procedure are executed. Nested
procedures are not listed, and separate LIST commands are required if these
need to be displayed.

Chapter 3: NCL Concepts 33

Chapter 3: NCL Concepts

This section contains the following topics:

Where Does NCL Execute? (see page 33)
What Is an NCL Procedure? (see page 33)
What Is an NCL Process? (see page 34)
NCL Processing Region (see page 35)
Execute NCL Processes Serially (see page 36)
Execute NCL Processes Concurrently (see page 37)
Dependent Processing Environment (see page 38)
Issue Commands from an NCL Process (see page 41)
NCL Processes and the Remote Operator Facility (ROF) (see page 43)
Communication Between Processes (see page 45)
Scope of the NCL Processing Region (see page 48)

Where Does NCL Execute?

NCL executes only in association with a real or internally-simulated terminal.
The most flexible method of invoking NCL processing, and the one that is easiest
to understand, is to use the EXEC or START commands from an OCS window.
These commands let you specify the name of the NCL program that you want to
run.

Other methods of executing NCL are implicit (see page 39) rather than explicit.

What Is an NCL Procedure?

The basic unit of NCL code is called an NCL procedure. A procedure contains one
or more NCL statements that are executed when the procedure is invoked.

Each NCL procedure has a 1- to 8-character name and resides in your product's
procedure library. In OS/VS systems this is a Partitioned Data Set (PDS). In VM
systems the library is held on a CMS minidisk.

Procedures are created or modified by an appropriate editor, for example, ISPF.

What Is an NCL Process?

34 Network Control Language Programming Guide

What Is an NCL Process?

The actual execution of an NCL procedure is termed an NCL process. The EXEC
or START command specifies the name of an NCL procedure, which is either
retrieved from the NCL procedure library or is already resident in storage.

The following example shows the logical difference between a procedure and a
process:

START PROC1 NCPA

START PROC1 NCPB

START PROC1 NCPC

These commands, entered from an OCS window, invoke three separate NCL
processes, each of which is executing procedure PROC1. There can be only one
copy of PROC1 NCL code in storage, but three separate executions of it are
taking place concurrently. In this example each process is given a different NCP
name as a parameter.

It is nevertheless common for the term procedure to be used instead of process.

Nesting

The first procedure that is executed in a process can issue EXEC commands
internally to call other procedures. This is called nesting. Regardless of how
many other procedures are called, or the number of nesting levels involved, all
execute as part of the same process. If any procedure in a process issues a
START command, a new process is invoked, which is independent of the
originating process.

Execution of the procedures in a process continues according to the logic of the
procedures. When the first level procedure completes its processing, it ends and
the process terminates.

NCL Processing Region

Chapter 3: NCL Concepts 35

NCL Process Identifier

Each NCL process has a unique number associated with it when it starts
execution. This is the NCL Process Identifier (NCLID), and it is a 6-digit number in
the range 1 to 999999. Processes executing at the same time carry different
identifiers.

The process identifier lets individual processes be identified, even when
processes are executing the same procedure.

The process identifier is used principally to specify which process is to be the
target of a command such as GO, FLUSH, or INTQ, all of which can talk to NCL
processes.

NCL Processing Region

All NCL processing that occurs within a system is performed on behalf of
product users. These users can be people, who log on to the system with a user
ID/password combination. Also, there are internal environments that act like
real users, except that they do not have any real terminal associated with them.
These internal environments all have virtual user IDs and in fact can be profiled
in the same way as a real user ID by having a UAMS definition created.

The most common virtual user IDs are those associated with the background
environments known as the background logger and background monitor. If you
issue a SHOW USERS command from an OCS window, you will see these virtual
user IDs listed along with any real users logged onto the system at the time.
Other optional product components generate their own background
environments, so the list that you see on a SHOW USERS display varies
according to the configuration of the system.

Regardless of whether a user is real or virtual, every user in a product region is
capable of executing NCL processes, because every user has an NCL processing
region associated with their user ID while they are logged on.

The NCL processing region provides all the internal services necessary to allow
the user to have NCL processes executed on their behalf. While there is one NCL
processing region for each user; within each user region there can be one or
more NCL processing environments.

Execute NCL Processes Serially

36 Network Control Language Programming Guide

NCL Processing Environment

Each real user is associated with a 3270-type terminal with a display screen that
supports either one or two logical windows at any time.

Virtual users have no real terminals associated with them, but operate logically
as if they own one real line mode window.

Associated with each window that a user operates is at least one primary
processing environment. A processing environment provides the internal
services and facilities that are required to execute NCL processes for the user
from its associated window.

Real users, using real terminals, can have one or two windows and therefore
can have one or two active NCL processing environments directly associated
with these windows. Internal users have only one window (logically operating in
line mode) and therefore have only one NCL processing environment.

An NCL process always operates within the NCL processing environment
associated with the window from which it was invoked.

Execute NCL Processes Serially

You can use the EXEC command to invoke an NCL process which will execute
serially with respect to other NCL processes that are invoked by the EXEC
command from the same window (that is, in the same processing environment).

This means that if you enter:

EXEC PROC1

EXEC PROC2

from the OCS window command line, a process is invoked to execute procedure
PROC1 immediately; the process invoked to execute PROC2 waits until the first
process ends before starting to execute. The use of the EXEC command
therefore serializes execution of NCL processes in each NCL environment.

Serial execution of processes is useful for handling sequences of functions or
operations.

Remember: Each NCL processing environment is independent; each one can be
executing its own stream of serialized processes. There is no limit to the number
of processes that can be queued for serial execution within an NCL processing
environment.

Execute NCL Processes Concurrently

Chapter 3: NCL Concepts 37

Execute NCL Processes Concurrently

You can use the START command to invoke an NCL process that will execute
concurrently with other NCL processes that are invoked with the EXEC or START
command from the same window (that is, in the same processing environment).

This means that if you enter:

START PROC1

START PROC2

from the OCS window command line, a process is invoked to execute the
procedure PROC1 immediately, and the second process is also invoked to
execute PROC2 immediately. You can use the START command to execute many
independent NCL processes at the same time in the same NCL environment.

Concurrent execution of processes lets you have slave processes running on
your behalf doing different tasks. For example, a process could execute NCL
procedures that monitor the status of particular resources at regular intervals
and communicate with your OCS window only when something is found to be
wrong.

The default maximum number of NCL processes that can be executing
concurrently for any user is 128.

The concurrent stream of NCL processes executes in parallel with the serial
stream.

If you enter:

EXEC PROC1

EXEC PROC2

START PROC3

START PROC4

from the OCS window command line, PROC1 executes at once on the serial
stream and PROC2 is queued waiting for PROC1 to finish. However, PROC3 and
PROC4 start at once on the concurrent stream and therefore execute at the
same time as PROC1.

Dependent Processing Environment

38 Network Control Language Programming Guide

Dependent Processing Environment

Processing environments can operate in a hierarchy, so that there can be many
processing environments associated with the same window. This is achieved by
using the &INTCMD NCL verb.

Every NCL process executing within an NCL processing environment can
establish a dependent processing environment (using the &INTCMD verb) in
which other NCL processes can be invoked to execute on behalf of the higher
level.

In turn, an NCL process executing in a dependent processing environment can
establish its own dependent environment, forming a hierarchy of dependency
and allowing any NCL process to invoke chains of other dependent processes on
its behalf.

&INTCMD Verb

&INTCMD lets a procedure issue commands or execute other NCL processes and
have the results returned to it rather than returning to the user's terminal
window. This lets users write sophisticated procedures that check the results of
their actions and correlate commands with their results.

When an &INTCMD statement is executed by a procedure, a new NCL
processing environment is created that is subordinate to the process that owns
it, that is, the process from which the &INTCMD statement is issued. This new
processing environment is called a dependent processing environment, because
it exists only until its originating process ends or issues an &INTCLEAR verb. The
originating process can use &INTCMD to schedule commands or other NCL
processes for execution within its dependent processing environment.

Any NCL process can issue &INTCMD and create its own dependent processing
environment. As described before, if you issue the commands:

START PROC1

START PROC2

from your OCS window command line, processes PROC1 and PROC2 start
executing in your window's NCL processing environment.

Dependent Processing Environment

Chapter 3: NCL Concepts 39

If each of those processes issues:

&INTCMD START PROC3

then PROC1 and PROC2 each have a dependent processing environment in
which a process PROC3 is executing. Similarly, the PROC3 processes can issue
their own &INTCMD statements to create and use their own dependent
environments.

Any process that ends or that issues an &INTCLEAR statement, automatically
causes the termination of all dependent environments, and therefore causes
termination of whatever hierarchy of processes exists below it.

Explicit NCL Process Execution

The examples shown in the preceding sections have all assumed that the NCL
processes involved have been executed as a result of a START or EXEC
command. Using START or EXEC to invoke NCL processes is called explicit
execution.

Implicit NCL Execution

Certain system functions execute NCL processes on behalf of users. The Primary
Menu NCL procedure is an example of this. When a user logs on, the NCL
procedure nominated on the SYSPARMS MENUPROC command is executed.

In this case, NCL execution has been invoked implicitly as a result of a user
logging on, rather than as a result of a START or EXEC command.

Other examples of implicit NCL execution are:

■ MAI menu procedure (MAI selected from the Primary Menu)

■ EASINET procedure (invoked on behalf of each terminal when it connects)

Dependent Processing Environment

40 Network Control Language Programming Guide

System Level Procedures

Implicit NCL execution also occurs in relation to the various system level
procedures that operate internally. The most common examples are:

LOGPROC

This process executes the NCL procedure nominated on the SYSPARMS
LOGPROC= command. The process executes in the processing region of the
LOGP user ID type, which is a virtual user. LOGPROC views, and can act on,
all messages that flow to the log.

PPOPROC

This process executes the NCL procedure nominated on the SYSPARMS
PPOPROC= command. The process executes in the processing region of the
PPOP user ID type, which is a virtual user. PPOPROC views, and can act on,
all unsolicited messages that are sent to your product by VTAM to report
network events.

Other system level procedures can be started by optional components, for
example, the Network Error Warning System (CNMPROC).

MSGPROC Procedure

A user operating in OCS mode can have a MSGPROC procedure associated with
the window.

The MSGPROC procedure is invoked automatically when the user selects OCS
mode from the Primary Menu, and is therefore implicitly executed. The
MSGPROC procedure has access to all messages that are sent to the OCS
window and can intercept, change or delete them as required. Message
attributes such as color and highlight options can also be changed.

MSGPROC facilities are available to OCS windows running on real terminals, to
background environments, system level procedures, and console environments.
Processes that execute in dependent processing environments cannot have
MSGPROCs associated with them.

Issue Commands from an NCL Process

Chapter 3: NCL Concepts 41

Issue Commands from an NCL Process

Each NCL process executes within the NCL processing region of the user ID that
invoked it and is entitled to execute any command the user can execute from an
OCS window command line. The process therefore has the same command
authority as the user for which it is executing.

If a process executes a command, the rules outlined in the following sections
dictate where the results of the command are sent.

Inline Command Execution

If an OCS operator enters:

START PROC1

from the OCS window command line, the process PROC1 starts running.

If the process then executes the command:

SHOW USERS

the results of the command (the answer) flow to the OCS window. The process
itself never has access to the messages generated as a result of the command.
Consequently the procedure cannot make any decisions based on the results of
the command.

The execution of a command by a process in this example is called inline
command execution.

Issue Commands from an NCL Process

42 Network Control Language Programming Guide

Dependent Command Execution

If PROC1 is started in the same way as described in the previous section but
executes the NCL statement:

&INTCMD SHOW USERS

the SHOW USERS command is executed in the dependent processing
environment for the process. The messages generated by the command are not
returned to the user's OCS window but queued in a stack called the dependent
response queue. The process PROC1 can then issue the NCL statement:

&INTREAD ARGS

to read the results of the command from the dependent response queue one
message at a time. The individual words of each message are tokenized and
placed in variables of the form &1 &2... &n.

This technique lets a process issue a command and get the results back
internally, so that the process can review the results and therefore make a
decision based on the results of the command. This allows correlation of
commands and results which in turn provides unlimited capability for complex
logic to be built into processes to handle monitoring and automation of events.

The use of &INTCMD to execute commands privately in this way is called
dependent execution of commands.

Review of Message Delivery Rules

The principal difference between inline and dependent command execution is
the message delivery that applies to the two different techniques.

A process that issues an inline command never sees the results of the
command; the results are always returned to the owner of the NCL processing
environment in which the process is running.

A process that issues a dependent command sees the results of the command
because they are queued to its dependent response queue and can be read
using the &INTREAD statement.

NCL Processes and the Remote Operator Facility (ROF)

Chapter 3: NCL Concepts 43

NCL Processes and the Remote Operator Facility (ROF)

The concepts of NCL operation discussed so far have covered execution of
processes within the NCL processing region of the user, in the system where the
user is physically logged on.

ROF lets a user, who is logged on in one system, route commands to other
systems for execution. The results of these commands are then returned to the
originating user.

ROF also allows a command to be routed to one system for onward propagation
to another system where the command is to be actually executed.

Since ROF provides services at a command level, NCL processes (which can issue
commands) are also entitled to use ROF services to route commands to a
remote system and retrieve the results.

NCL Processes and the Remote Operator Facility (ROF)

44 Network Control Language Programming Guide

Message Flow on a ROF Session

A user who issues a SIGNON command to another system or who issues a
ROUTE command to send a command to another system for execution
establishes a ROF session. The user is logically logged on to the remote system
and has user attributes and privileges as defined to the remote system.

If you enter:

ROUTE SOL2 SHOW USERS

from the OCS window command line, the SHOW USERS command is sent to the
remote system known as SOL2 and executed under your ROF logon. The results
of the command are returned and displayed on your real OCS window.

If you enter:

START PROC1

to start the process PROC1, which in turn issues the inline command:

ROUTE SOL2 SHOW USERS

the results are also returned to the real OCS window. In other words, the
delivery of the results of inline commands is the same across a ROF session as it
is within the one system. If a process executes an inline command either in its
own system or by routing the command to another system, the results return to
the owner of the NCL processing environment in which the process is executing;
they do not return to the process itself.

Alternatively, if the process in the example issues the statement:

&INTCMD ROUTE SOL2 SHOW USERS

the results return to the PROC1 dependent response queue, and can be read
back by PROC1 using the &INTREAD statement.

In summary, therefore, the delivery of command results is always the same,
regardless of whether a process issues a command for execution in its own
system or a remote one.

The ability of NCL processes to issue commands across ROF sessions, and to
correlate the results, allows the development of monitoring and control
processes that can operate unseen and communicate with the operator only
when a problem occurs.

Communication Between Processes

Chapter 3: NCL Concepts 45

Communication Between Processes

NCL processes execute in isolation from one another and although many
processes can run concurrently in the same NCL environment or region, they
usually have no knowledge of each other's existence.

However, it is often very useful to communicate directly with another NCL
process either within the same NCL region or (depending on implementation
options and user authority) across NCL regions.

The ability of processes to talk to each other provides the framework for
developing co-operative processes that can coordinate their activities but
remain independent. ROF services can also be used to provide communication
between processes in different systems.

INTQUE Command

As described in the preceding sections, a process receives the results of
commands that it issues using the &INTREAD verb. In concept there is a queue
associated with the process, to which can be added messages that represent the
results of commands. The &INTREAD statement allows the process to take
messages off the queue one by one and process them as required.

The queue used for the messages generated by commands is called the
dependent response queue.

The INTQUE command can also be used to place messages on a process's
dependent response queue either by entering the command from an OCS
window command entry line, or (more commonly) by issuing the INTQUE
command from a different process.

Example: INTQUE command

The following example illustrates the concept. An OCS operator enters:

START PROC1

from the OCS window, which starts the process PROC1.

PROC1 then executes the following statements:

&WRITE DATA=&ZNCLID READY FOR WORK.

&INTREAD ARGS

Communication Between Processes

46 Network Control Language Programming Guide

At this point the process suspends execution pending the arrival of message(s)
on its dependent response queue.

The operator, or another NCL process, then enters:

INTQUE ID=357 TYPE=RESP DATA=BEGIN

where 357 is the NCL process identifier of the process PROC1 and TYPE=RESP
indicates that the text of the command is to be placed on the PROC1 dependent
response queue. The &INTREAD of the process then completes, with the
variable &1 containing the word BEGIN. The process can then go ahead with
whatever other processing is required, having used the &INTREAD and INTQUE
combination to provide direct communication between the process and the
operator.

Dependent Request Queue

While the INTQUE command can be used to place messages on the dependent
response queue of a target process, it is sometimes confusing if messages arrive
from an INTQUE command when the process is also expecting the results of a
command it has issued. The INTQUE messages might arrive in the middle of the
messages generated by the command.

To avoid this and to provide a method of isolating messages generated by
commands issued by a process (which are predictable) from messages arriving
from INTQUE commands issued externally (which are unpredictable), a second
message stream is available. This is the dependent request queue.

Communication Between Processes

Chapter 3: NCL Concepts 47

Example: Dependent Request Queue

If the example in the previous section is changed so that PROC1 executes:

&WRITE DATA=&ZNCLID READY FOR WORK.

&INTREAD ARGS TYPE=REQ

and the operator enters:

INTQUE ID=357 TYPE=REQ DATA=BEGIN

then the &INTREAD issued by PROC1 completes as before with &1 = BEGIN, but
the communication flow takes place on the request flow rather than the
response flow.

In a more complex scenario, PROC1 can use this differentiation in message flows
to keep separate the results of its own commands (the response flow) and the
arrival of messages from operators or other processes that arrive on the request
flow.

Request and Response Disciplines

It is important to understand that the terms request and response are arbitrary
and have no absolute meaning. They serve only to provide a logical separation
between types of messages that can be used to simplify communications
between processes.

A process that issues the statement:

&INTREAD TYPE=RESP ARGS

can never receive messages sent to it by a command:

INTQUE TYPE=REQ

If you want to use INTQUE to send messages from one process to another, you
must plan what you are going to send, make sure that the process you send a
message to knows what to expect and is prepared to receive it, and that you
coordinate the INTQUE and &INTREAD statements to make sure that they both
expect the messages on the same request or response flow.

Scope of the NCL Processing Region

48 Network Control Language Programming Guide

INTQUE Across ROF Sessions

Since INTQUE is a standard command, a process in one system can use INTQUE
across a ROF session to talk directly to a process on the remote system. To do
this, the process (or OCS operator) must know the target process identifier in
the remote system and ROUTE an INTQUE command to the remote system.

This delivers an INTQUE message to the dependent response or request queue
of the target process, as if the target were executing in the same system.

If the target process is executing in the remote system as a result of a ROF
command, that is, if it was started in the remote system by the command:

ROUTE SOL2 START PROC2

then PROC2 cannot use INTQUE to talk back to the local system. Instead, it uses
&WRITE, which in a ROF environment causes all the command output generated
by a remote process to flow back to the user ID environment in the local system.

Scope of the NCL Processing Region

The concept of the NCL region is designed to limit the activities of individual
users so that the NCL processes that they can run or communicate with are
always within the user's own region. This prevents one user from affecting or
tampering with NCL processes in use by other users or background
environments.

The INTQUE command has a second authority level that is checked when a user
attempts to route a message to a process outside their own NCL region. The
user must have an authority level equal to or greater than the opauth value
assigned to the INTQUE command. The opauth value defaults to authority level
2, but could be different in your installation.

Scope of the NCL Processing Region

Chapter 3: NCL Concepts 49

Find Out Which NCL Processes Are Executing

Use the SHOW NCL command to display the status of active NCL processes.
SHOW NCL provides displays of NCL activity by environment or by region:

■ Environment shows you details of NCL processes that are executing in the
NCL environment of the window from which the command is entered

■ Region shows you all NCL activity associated with your user ID

SHOW NCL can also be used to display the status of NCL processes executing on
behalf of other user IDs if you have sufficient command authority. For more
information, see the Reference Guide and the Online Help.

Chapter 4: NCL Statement Types and Syntax 51

Chapter 4: NCL Statement Types and Syntax

This section contains the following topics:

NCL Statements (see page 51)
Format of NCL Statements (see page 51)
NCL Conventions and Syntax (see page 54)
Comments in NCL Procedures (see page 55)
Label Statements (see page 58)
Verb Statements (see page 61)
Built-in Function Statements (see page 62)
Assignment Statements (see page 63)
Command Statements (see page 64)

NCL Statements

An NCL procedure comprises a group of NCL statements that describe the logic
and functions to be executed when the procedure is invoked. There are
different types of NCL statements, where the type is determined by the function
that the statement performs within the procedure.

Format of NCL Statements

NCL statements are coded as free-format, 80-character records where the first
72 characters contain the statement syntax and the last 8 characters can
contain optional statement sequence numbers that, if present, are used in error
messages generated by NCL.

An NCL procedure can contain statements that are completely blank. These are
useful for visual layout when reading a procedure and are ignored when the
procedure is executed.

Format of NCL Statements

52 Network Control Language Programming Guide

Statement Continuations

Statements could require more than the 72 characters available in a single
record. To accommodate this, NCL supports the continuation of a statement
across multiple consecutive lines. Use of continuations can assist in improving
the layout of a procedure and simplify future modification.

The number of continuations is limited to a total statement length of 2048
characters, before variable substitution.

A continuation is indicated when the last non-blank character on a statement
(not including the optional sequence number in columns 73 to 80) is a plus (+)
sign.

When a continuation is detected, the plus sign is removed and the text of the
next statement is concatenated to the statement that contained the plus sign,
after stripping leading blanks. This concatenation continues until a statement is
found that does not have a plus sign as the last non-blank character.

Example 1: Statement Continuations

&FILE GET ID=MYFILE OPT=KEQ VARS=(A,B,+ -* DATE, TIME

 -* and NAME

 C,D,E,F,G,+ -* ADDRESS

 -* DETAILS

 H,I,J) -* EQUIPMENT

 -* DETAILS

would result in the statement:

&FILE GET ID=MYFILE OPT=KEQ VARS=(A,B,C,D,E,F,G,H,I,J)

Example 2: Statement Continuations

Continuation is deactivated by the &CONTROL NOCONT statement. This may be
necessary in procedures where a plus sign is used to set a function key where
the plus sign also indicates an implied blank. In such cases, these statements
should be preceded by an &CONTROL statement that deactivates continuation
processing and followed by another that reactivates it.

&CONTROL NOCONT

PF5 PREF,MSG USER1+

&CONTROL CONT

The CONT and NOCONT operands of the &CONTROL verb cannot be coded as
variables.

Format of NCL Statements

Chapter 4: NCL Statement Types and Syntax 53

Variable Substitution

Statements can contain variables that have contents that are resolved through a
substitution process at the time the statement is executed. The use of variables
within the statement syntax effectively changes the text of the statement by
substituting the current value of the variables imbedded in the statement text
each time the statement is executed.

During the substitution process, a restriction of a maximum word size of 256
characters exists. Additionally, the total size of a statement after substitution
has been completed is 12288 characters.

Example: Variable Substitution

The length of the following coded statement is 28 characters, including blanks
between the words:

&IF &A = &B &THEN &GOTO .END

If it were used in the following manner:

&A = ABCDEFG

&B = ABCDEFG

&IF &A = &B &THEN &GOTO .END

then, after the substitution process performed at the time the statement is
executed, the statement would read as follows and be 38 characters long:

&IF ABCDEFG = ABCDEFG &THEN &GOTO .END

Variable substitution in statements let you code a standard logic routine that
processes different information.

NCL Conventions and Syntax

54 Network Control Language Programming Guide

NCL Conventions and Syntax

The logic capabilities of procedures include the ability to define user and global
variables, test the truth of conditions, and to make conditional branches on the
basis of these tests. To achieve this, certain syntax rules must be obeyed:

■ Procedure statements are stored in 80-character records. Columns 1 to 72
can be used to contain commands, statements, or comments. Columns 73
to 80 are reserved for optional sequence numbers. If present, these
sequence numbers are used in error messages to pinpoint a statement in
error.

■ Comments can be included within procedures to assist in documentation
and you are encouraged to use them freely.

Comments can occur as separate statements or on other types of
statement.

■ Continuation of a statement onto the next record is supported if the last
non-blank character on the line (excluding comments) is a plus sign (+). The
total length of a statement including all continuations cannot exceed 2048
characters. &CONTROL CONT must be in effect.

■ Syntax is free-format and can start in any column to improve presentation.

■ A procedure can invoke other procedures. This process is called nesting.
Nesting to 64 levels is supported. Variables can be passed to a procedure
either when the procedure is invoked by the operator or when a nested
procedure is invoked.

■ No individual word or field within a statement can exceed 256 characters.

■ The value of a variable cannot exceed 256 characters in length.

■ The total length of an expanded statement after variable substitution must
not be longer than 12288 characters.

■ Statements can contain any number of leading or trailing blanks. A
completely blank statement is ignored. No specific termination statement is
required to signal the end of a procedure. When the end of the procedure is
reached (end-of-file), the procedure terminates, unless terminated through
other processing options (for example, &END) or errors.

Comments in NCL Procedures

Chapter 4: NCL Statement Types and Syntax 55

Comments in NCL Procedures

NCL allows the inclusion of comments within procedures to assist in
understanding the code. In addition to providing internal documentation of the
processing being performed by the procedure, comments can also provide a
simple means of directing messages to the operator when operating in OCS
mode.

Comments fall into four categories:

■ Comments on NCL statements

■ Displayable stand-alone comment lines

■ Highlighted key words in comment lines

■ Non-displayable stand-alone comment lines

Comments on NCL Statements

Individual statements can include comments after the statement text, to
describe the function being performed by that statement. In such cases the
comments must commence with the two suppression characters, dash asterisk
(-*). The text of the comment following the -* is free-form.

Example: Comments on NCL Statements

&PANEL TESTPANEL -* DISPLAY OUR TEST PANEL.

Where a statement spans multiple lines and therefore contains continuations,
comments can be included on each line if the comment text follows the
continuation indicator.

&FILE GET ID=MYFILE OPT=SEQ +-* SEARCH IS TO BE

 -* SEQUENTIAL

 VARS=(A,B,C) -* RECEIVE INTO THESE

 -* VARIABLES.

Comments in NCL Procedures

56 Network Control Language Programming Guide

Displayable Stand-alone Comment Lines

Comment lines can be included in procedures by inserting an asterisk (*) as the
first non-blank character in the statement, unless the statement contains a
label, in which case the asterisk must be the first non-blank character following
the end of the label. Comment lines are displayed at an OCS window exactly as
entered (both upper and lower case) after variable substitution has been
performed. The leading asterisk is not displayed. This facility provides a simple
means of building online operator instructions or Help facilities.

Example: Display Stand-alone Comment Lines

*BRING UP WESTERN SECTOR AT 13.00.

Highlighted Key Words in Comment Lines

Key words within a comment line can be highlighted. This is achieved by coding
a plus sign (+) in place of the asterisk as the first non-blank character in the
statement. Such lines are scanned for the occurrence of the highlight indicator,
which is an at (@) sign. Words bounded by this character are displayed in high
intensity and a blank substituted in place of the @ character. Multiple
occurrences can exist within a line.

Example: Highlight Key Words in Comment Lines

+BRING UP@WESTERN SECTOR@AT@13.00@.

will display as:

BRING UP WESTERN SECTOR AT 13.00.

If only one @ is contained in a line, the remainder of that line is displayed in
high intensity. The effect does not flow on to the next procedure statement.

Note: The &WRITE verb offers further facilities for displaying information and
for using color and highlighting to improve information presentation.

Comments in NCL Procedures

Chapter 4: NCL Statement Types and Syntax 57

Non-displayable Stand-alone Comment Lines

If the minus (-) suppression character (see page 57) is used in conjunction with
the asterisk (*) it indicates that the comment line display is to be suppressed. In
such a case the comment is not displayed, even if executing from an OCS
window, and acts solely as a source of documentation within the procedure.

Example: Non-displayable Stand-alone Comment Lines

-*

-* THIS PROCEDURE ACTIVATES THE NETWORK

-*

Suppression Character

The minus character (-) is reserved as the suppression character. If used, the
suppression character (-) must be the first non-blank character in the line. The
suppression character can be used with both command and comment lines, but
not NCL statement lines. When used in a command line, the command is
executed in the normal way. However, the command is neither displayed
(echoed) on your screen before execution, as would normally be the case, nor
written to the system's activity log.

Example: Suppression Character

This example shows how to use the suppression character when entering
commands from an OCS window.

-SHOW USERS

Results generated by the execution of the command are displayed at your
terminal and are written to the activity log.

An alternative to using the suppression character is the &CONTROL NOCMD
statement. This statement prevents the echoing of all commands within the
procedure until the end of the procedure or until and &CONTROL CMD
statement. When using NOCMD, the results generated by commands are
written to the activity log.

Use of &CONTROL NOCMD has no impact on comment lines and does not cause
them to be suppressed.

Label Statements

58 Network Control Language Programming Guide

Label Statements

NCL supports the definition of labels that can be branched to during processing
using an &GOTO or &GOSUB statement. The following rules apply when
defining labels:

■ Labels commence with a period (.), followed by 1 to 12 characters and not
containing any ampersands (&).

■ A label is not required to commence in column 1. However, it must be the
first item on the statement.

■ A label can be placed on a statement containing no other data.

Examples: Valid Label

.LABEL1 -* Normal label

.10 -* Numeric label

.ACT-NODE -* Label containing special characters

.CMD1 statement -* NCL statement following label

Examples: Invalid Label

BAD -* Does not commence with a period.

.LABELTOOOLONG -* Label must be 1 to 12 characters.

.LABEL&1 -* Cannot contain ampersands.

XYZ .LABEL -* Must be first item on line.

Label Statements

Chapter 4: NCL Statement Types and Syntax 59

Label Variables

A variable can be specified as the target of an &GOTO or &GOSUB statement.
This variable, after variable substitution, is then taken as a label to which a
branch is required.

Example: Label Variables

&GOTO .&MSGID

can read, after variable substitution:

&GOTO .IST350I

and a search for the label .IST350I is made.

Usually, most information input to a procedure contains a unique identifier such
as a message number. The ability to branch to a label variable makes it possible
to use this unique message number and branch directly to the part of the
procedure concerned with processing the message, instead of having to use a
number of &IF statements to determine the processing required.

Undefined Labels

Normally, an attempt to branch to an undefined label results in an error and the
procedure is terminated. However, the &CONTROL NOLABEL operand lets the
user specify that an attempt to branch to an undefined label will not result in an
error, but will simply drop through and execute the statement following the
&GOTO. Thus, a trap for unexpected messages can be set up and all of the
efficiencies associated with direct branching still achieved.

Example: Undefined Labels

&CONTROL NOLABEL

.NEXT

 &PPOREAD VARS=(A,B,C,D,E)

 &GOTO .&A

 &WRITE ALARM=YES DATA=UNEXPECTED INPUT &A &B &C &D &E

 &GOTO .NEXT

.IST305I

.IST314I

 .

 .

 .

Label Statements

60 Network Control Language Programming Guide

Duplicate Labels

A label in an NCL procedure should not appear more than once; NCL normally
checks to ensure a label is not duplicated. If the &CONTROL NODUPCHK
operand is used, duplicate label checking is not performed. This option can
result in improved efficiency, but is normally only used after the procedure has
been thoroughly debugged.

While label variables offer great benefits in both performance and simplicity,
one point needs to be considered. By its very nature, a label must be unique
within a given procedure. An attempt to &GOTO a duplicate label will result in
an error (unless the &CONTROL NODUPCHK option is in effect). If the processing
of a label variable yields a duplicate label, perhaps conflicting with one used
earlier in the procedure, you can use the following. if you are using a variable in
an &GOTO that is itself not unique, you can append one or more characters to
the label in the &GOTO to ensure the generated label is in fact unique.

Example: Duplicate Labels

In this example, the operator can enter YES or NO to either of the &PAUSE
statements. In the second, the letter X is prefixed to the operator's input to
differentiate it from input entered in reply to the first &PAUSE statement.

&WRITE DATA=ENTER 'Yes' OR 'No'

.PAUSE &PAUSE ARGS

 &GOTO .&1

 &WRITE DATA=INVALID RESPONSE, RE-ENTER.

 &GOTO .PAUSE

 .NO &END

 .YES

 .

 .

 .

 &WRITE DATA=ENTER 'Yes' OR 'No'

.PAUSE2 &PAUSE ARGS

&GOTO .X&1

&WRITE DATA=INVALID RESPONSE, RE-ENTER.

&GOTO .PAUSE2 -* Note addition of X to both

.XNO &END -* &GOTO and target labels to

.XYES -* make labels unique.

Verb Statements

Chapter 4: NCL Statement Types and Syntax 61

Minimize Labels

By using the verbs &DO, &DOWHILE and &DOUNTIL in your procedure logic you
reduce the need for &GOTO and &GOSUB statements. This is recommended,
both to reduce the number of labels that you need in a procedure and to
improve the structure of your procedures.

Verb Statements

NCL verbs cause actions to occur. There are different types of verbs, some that
dictate the flow of processing and logic, others that fetch information for the
procedure to process and others that cause data to flow to external targets.

The following are examples of verb statements:

&DOWHILE

Causes processing to continue in a loop while a certain condition exists.

&WRITE

Allows a procedure to write a message to the user's terminal.

&FILE

Allows a procedure to read, write, or delete records on a file.

NCL statements that contain a verb have the following general form:

verb [opt=opt &variable ... &variable]

where verb is the keyword that is the name of the verb to be executed, opt is a
keyword operand identifying a sub function of the verb, and &variable
represents parameters required as input to the verb's actions, or the names of
variables that receive the results of the verb's execution.

Built-in Function Statements

62 Network Control Language Programming Guide

Built-in Function Statements

NCL built-in functions perform commonly required functions that are either
impossible to achieve using NCL or require complex NCL coding.

The following are examples of built-in functions:

&DEC

Converts a hexadecimal number to its decimal equivalent.

&SUBSTR

Lets you extract part of one variable and place it in a second variable.

&CONCAT

Lets you concatenate the values of two or more source variables and place
the result in a target variable.

NCL statements that contain a built-in function have the general form:

&target = function parameter

where &target is the name of a variable that is to receive the result of the
built-in function, function is the keyword that is the name of the built-in
function to be executed and parameter represents parameters required as input
to the built-in function.

Note: For more information about NCL verbs and built-in functions, see the
Network Control Language Reference Guide.

Assignment Statements

Chapter 4: NCL Statement Types and Syntax 63

Assignment Statements

Assignment statements let you set a new value for a nominated variable.
Assignment statements have the following format:

&variable = expression

where &variable is the name of the target variable, whose value is to be
changed to the result of the execution of expression. The target variable is
always on the left of the equals sign (=) and the value to be assigned to the
target is always on the right of the = sign.

Assignment statements are used to manipulate the values of the variables that
your procedure uses.

Assignment also occurs as the result of executing built-in functions and some
verbs.

Example: Assignment Statements

&A = 10 -* &A is assigned the value 10

&XYZ = ABCDEF -* &XYZ receives the value ABCDEF

&A = (&C + 1) - (&B * 5) -* Add 1 to &C then subtract

 -* five times the value of

 -* &B and put the result in &A.

Arithmetic

Arithmetic is performed by a series of explicit assignment statements, in which
the target variable receives the result of the calculation coded to the right of the
= sign. Compound arithmetic expressions are supported by NCL, and both
integer and floating-point arithmetic can be used.

More information:

About Arithmetic in NCL (see page 95)

Command Statements

64 Network Control Language Programming Guide

Command Statements

You can execute any product command within a procedure by coding the
command statement exactly as you would enter the command from an OCS
window.

You can also code the command statement to include variables in the command
text, in which case substitution is performed before the command is executed.

Chapter 5: Variables, Substitution, and Assignment 65

Chapter 5: Variables, Substitution, and
Assignment

This section contains the following topics:

What Is a Variable? (see page 65)
Variable Types (see page 66)
DBCS Device Support (see page 69)
Variable Substitution (see page 69)
Complex Variable Substitution (see page 72)
Align Substitution Data (see page 73)
Lowercase Data (see page 74)
Debugging Procedures (see page 74)
Set Variables to a Particular Value (see page 75)
NCL Table Manipulation (see page 79)
Vartable Facility (see page 80)

What Is a Variable?

The term variable describes a word that may represent different values within a
statement. A variable commences with an ampersand (&) and is followed by 1
to 12 characters that form the name of the variable.

A variable name can contain the characters $, #, @, A to Z, and 0 to 9. The name
is delimited by the first blank or non-valid character. Although the names of
variables can be coded to contain both upper and lower case characters (A to Z)
they are treated internally as being entirely upper case.

However, when operating in a system where support for double byte character
stream (DBCS) terminals is active, no translation to upper case is performed.

If a variable name starts with a digit, the whole variable name must be numeric.

Variable Types

66 Network Control Language Programming Guide

Variable Types

There are four types of variables:

■ System variables

■ User variables

■ Global variables

■ Parameters

System Variables

A number of variables are maintained by the system to provide access to
commonly required facilities. An example of a system variable is the time, which
can be obtained by referencing the &TIME system variable.

User Variables

Any number of user variables (within storage limitations) can be defined to
contain information required during the processing phase of a procedure.
Explicit definition of user variables is not required. The first time a user variable
is referenced it is automatically defined. User variables are automatically
deleted when a procedure terminates.

User variables can be passed across nested procedure levels if the &CONTROL
SHRVARS operand is in force when the nested procedure is invoked, otherwise
they are unique within the current nesting level. If a user variable is required in
a nested level and &CONTROL SHRVARS is not in effect, its value must be passed
explicitly as a parameter on the EXEC command when the nested level is
invoked. An &RETURN statement can then be used to return specified variables
to a higher nesting level, thus facilitating the development of modular functions.

Variable Types

Chapter 5: Variables, Substitution, and Assignment 67

Global Variables

Global variables operate in a similar manner to user variables. The difference is
that global variables, as the name implies, are global to the entire system and
once created can be referenced or modified by any procedure. Thus, global
variables can be used to perform cross-talk between procedures.

Global variables commence with a 1- to 4-character prefix that you can set for
your site using the SYSPARMS NCLGLBL command. Unless otherwise defined this
prefix defaults to GLBL. The remaining characters must conform to standard
variable naming conventions.

The &000 system variable is set to the current value of the global variable
prefix. Thus, if the SYSPARMS NCLGLBL=#@ command was used to set the
global variable prefix to #@ then &000 returns that value. This facility is
provided to allow the procedure designer to develop procedures that execute
correctly regardless of the global variable prefix. For example, &&000SYS1 is
resolved to &GLBLSYS1 using the default value for the global variable prefix, or
&#@SYS1 if the prefix is set as mentioned previously.

A global variable can be created explicitly by an assignment statement, for
example:

&&000SHIFTLDR = &STR SHIFT LEADER IS BILL SMITH

It can also be created implicitly by specifying a global variable name as the
target of a verb that creates or modifies variables as part of its function.

Once created, a global variable remains in existence until it is explicitly deleted
by an assignment statement. For example:

&&000SHIFTLDR =

Note: The uncontrolled creation of large numbers of global variables can
consume a large amount of storage. You should ensure that global variables are
deleted as soon as they are no longer needed. Care should be taken when
designing procedures to ensure that they do not end without deleting any
redundant global variables created.

Variable Types

68 Network Control Language Programming Guide

CA recommends that you observe a standard naming convention for global
variables to avoid the inadvertent destruction of variables where, for example,
one procedure creates a global variable with an identical name as that created
by another.

The SHOW NCLGLBL command provides a display of the global variables that
exist in the system. For more information, see the Online Help.

Persistent Global Variables

You can save selected NCL global variables to preserve data between restarts of
the region. Saved global variables are known as persistent global variables
(PGVs). They are automatically loaded at restart.

You can use the GLBLSAVE process macro or calls to the Persistent Global
Variables Interface ($CAGLBL) to create PGVs. GLBLSAVE has an NCL procedure
($RMMC47S in the COMMANDS data definition) that shows how to use
$CAGLBL.

Note: For more information about $CAGLBL, see the Network Control Language
Reference Guide.

You can administer PGVs from the Persistent Global Variables List by entering
/PVAR at the command prompt.

Note: For more information about the Persistent Global Variables List, see the
Online Help.

Parameters

Parameters are those variables passed to the procedure when it is invoked by
the operator, by another procedure, or by your product.

Parameters entered when the procedure is invoked are positional and must be
entered in the order expected by the procedure. Entered parameters are
separated by one or more blanks. Commas are not accepted as delimiters
between parameters. The procedure must verify that the entered parameters
are correct. Each parameter is allocated to a variable in the form &n, where n is
a number, starting at 1, identifying the position of the parameter.

DBCS Device Support

Chapter 5: Variables, Substitution, and Assignment 69

If the operator enters:

EXEC TEST1 PU1 LU2 NCP3

the following variables are created:

&1 will be set to PU1

&2 will be set to LU2

&3 will be set to NCP3

In addition, when a procedure is invoked, the user variable &ALLPARMS will be
set to the entire string provided, excluding the EXEC or START command and the
procedure name. In the previous example, &ALLPARMS is set to:

PU1 LU2 NCP3

The system also supplies a count of the number of variables created in the
system variable &PARMCNT. In the previous example, &PARMCNT is set to 3.

Note: &CONTROL SHRVARS can be utilized to pass some or all variables to a
lower nesting level rather than specifying individual parameters.

DBCS Device Support

Your products support terminals that use DBCS representation of symbols for
languages such as Japanese (Kanji script).

When DBCS support is active, the system no longer automatically translates
lower case characters to upper case for comparative purposes, and so on. When
DBCS is active all characters in the extended character set are regarded as
unique, and certain system functions no longer apply, or are treated as a
no-operation.

Variable Substitution

Before a procedure statement is analyzed or a command is executed, the record
is scanned for the presence of variables, indicated by an ampersand (&). This
process is called variable substitution. Variable substitution is performed from
right to left of the statement. When a potential variable is detected by the
presence of an ampersand, the variable is isolated by scanning to the right for a
delimiting blank, comma, or other character not valid in a variable name.

Note: A single character ampersand is not treated as a variable and remains
intact as a single ampersand.

Variable Substitution

70 Network Control Language Programming Guide

Take the string &A.1 as an example. &A is processed as the variable and the
resulting substitution inserted in its place (for example, 123.1).

Variables whose names are entirely numeric (for example, &99) have unique
properties in that they are delimited by the first non-numeric character. For
example:

&91 = 123

&A = &91ABC

The variable &A in this example would yield the value 123ABC. This technique
can provide an alternative to the use of &CONCAT with alphanumeric variables.

In the substitution process no spaces are added or deleted. The variable is
removed and the text to the right of the variable is relocated to accommodate
the data being substituted in place of the variable. A variable can be referenced
as often as required. Left and right alignment of substituted data can be
achieved using the &CONTROL ALIGNL and ALIGNR options to enhance tabular
output or when displaying data in full-screen panels the #FLD statement can be
used to assign specific alignment attributes to a field.

Variable Substitution

Chapter 5: Variables, Substitution, and Assignment 71

Undefined Variable Substitution

Undefined variables, or variables that have a null value, are eliminated from the
line; therefore, you should to ensure that variables are correctly coded and will
not be eliminated during the substitution process. For example, the following
statement:

&WRITE DATA=The time is &TIMW and date is &DATE1

incorrectly contains the variable &TIMW where &TIME was intended. Because
&TIMW does not have an assigned value, it is eliminated from the statement;
the final result written to the user's terminal is:

The time is and date is 91.001

In certain cases, such as with an &IF statement, this elimination of variables can
pose problems and result in syntax errors. Consider the following statement:

&IF &1 EQ YES &THEN &GOTO .OK

If &1 is a null value, perhaps because an operator did not enter its value after an
&PAUSE, the statement after substitution appears as:

&IF EQ YES &THEN &GOTO .OK

and results in a syntax error and the procedure terminates.

A technique that can be used to avoid this is to append a constant character to
the variable and, of course, to the value to which it is to be compared. For
example:

&IF .&1 EQ .YES &THEN &GOTO .OK

In this case, if the variable &1 has a null value, the following statement results:

&IF . EQ .YES &THEN &GOTO .OK

which is syntactically correct and performs as desired.

Note: When comparing numeric values, a zero (0) can be used as the constant
character.

For more information about using this technique, see the &IF verb description in
the Network Control Language Reference Guide.

Complex Variable Substitution

72 Network Control Language Programming Guide

Complex Variable Substitution

Complex or multi-level variables are supported. If after one substitution, the
value generated remains a variable (commences with an &), substitution is
again performed.

Example 1: Complex Variable Substitution

&A = 1

&1 = MESSAGE

&WRITE DATA=TEST &&A

Because the current value of &A (1) is substituted into the statement, the first
pass of the &WRITE statement yields:

&WRITE DATA=TEST &1

The second pass then resolves &1, and yields:

&WRITE DATA=TEST MESSAGE

Example 2: Complex Variable Substitution

Complex variables are important when performing matrix processing where an
unknown number of variables must be dynamically generated to accommodate
data.

&FILE OPEN ID=MYFILE

&FILE SET ID=MYFILE KEY=MYKEY

&LIMIT = 100

&CNT = 1

&DOWHILE &CNT LT &LIMIT

 &FILE GET ID=MYFILE OPT=KEQ VARS=MYFIELD1

 &SAVE&CNT = &MYFIELD1

 &CNT = &CNT + 1

&DOEND

Align Substitution Data

Chapter 5: Variables, Substitution, and Assignment 73

Align Substitution Data

The substitution process does not, by default, preserve any difference in the
length between a variable name and the data being substituted in place of the
variable. This can make tabular output of rows of numbers difficult or
impossible to align when not using full-screen facilities.

The &CONTROL statement provides the ALIGNL and ALIGNR options to specify
special alignment requirements. ALIGNL requests left alignment and ALIGNR
right alignment. Both of these options can additionally identify a fill character
(by default a blank) that is to be used, for example, ALIGNR$.

When using these alignment options, the length of the name of the variable
itself is used to determine both the point of alignment and the number of fill
characters required. Therefore variables with names of the same length must be
used to ensure the correct alignment is achieved.

Example: Aligning Substitution Data

In this example, the three variables &COUNT01, &COUNT02 and &COUNT03 are
used to display a table of numbers. They are to be right-aligned and padded
with leading dashes (-).

&CONTROL ALIGNR-

&COUNT01 = 1

&COUNT02 = 1098

&COUNT03 = 66

&WRITE DATA=COUNT 1 = &COUNT01

&WRITE DATA=COUNT 2 = &COUNT02

&WRITE DATA=COUNT 3 = &COUNT03

The result is:

COUNT 1 = -------1

COUNT 2 = ----1098

COUNT 3 = ------66

Note: These techniques are designed to be used by NCL procedures running in
the OCS environment which do not utilize full-screen panels.

Lowercase Data

74 Network Control Language Programming Guide

Lowercase Data

By default, data assigned to a variable is converted to uppercase. However, use
of the &CONTROL NOUCASE statement allows lowercase data, such as input
from a full-screen panel, to be maintained. If you want comparison operations
to occur without translation of the operands being compared, specify
&CONTROL NOIFCASE in addition to the NOUCASE option.

Note: For data entry into a panel in lowercase, the field definition for the panel
must also specify CAPS=NO.

When operating in a system with the SYSPARMS DBCS=YES option specified, no
distinction is made between uppercase and lowercase. The rules regarding
automatic conversion to uppercase do not apply.

Debugging Procedures

During the development of procedures coding errors are bound to occur. The
&CONTROL TRACE and &CONTROL TRACELOG statements allow you to request
statements to be written to your terminal or the system log after variable
substitution and before execution. The &CONTROL statement can occur as
frequently as required and can therefore be placed strategically within the
procedure.

The TRACELAB and TRACEALL options are available to provide label flow tracing
and to include additional detail on the trace records that are logged.

The &CONTROL NOTRACE statement returns to normal processing. You will
have imposed a limit to the maximum number of trace messages that can be
generated by a procedure. By default this limit is 100 messages and has been
imposed to stop excessive tracing consuming system resources.

The NCLTRACE command can be used from an OCS window to dynamically start
or stop NCL procedure tracing while an NCL procedure is executing. This lets you
debug executing processes without having to stop them, edit the NCL to include
&CONTROL statements, and then restart them.

For more information about the NCLTRACE command, see the Online Help. For
more information about the &CONTROL verb, see the Network Control
Language Reference Guide.

Set Variables to a Particular Value

Chapter 5: Variables, Substitution, and Assignment 75

When testing procedures that use full-screen processing, the temporary
inclusion of variables in a vacant area in a panel can assist in tracking and
development. These can be removed when the procedure has been completed.

The &WRITE statement can also be used to great advantage to display the
contents of variables at specific points in processing.

When using &WRITE from procedures operating in full-screen mode, the
messages are queued and displayed in one or more full-screen panels when the
procedure terminates. Having completed the display of any queued messages,
the procedure ends.

Set Variables to a Particular Value

Assignment is the term used for the process of setting variables to a particular
value. Assignment is either explicit, in which case you use the assignment
statement to change the value of a variable, or implicit, in which case the action
of a verb causes a change in value of a target variable (or variables).

Explicit Assignment: Assignment Statement

The basic format of the assignment statement is:

&variable = expression

&variable

Is the name of the user variable or global variable whose value is to be
changed. The variable might not actually exist, in which case the assignment
statement creates it then sets its value.

The name of the variable must be valid according to the rules for variable
names.

If a system variable is specified as the target of an assignment statement a
syntax error will occur.

Complex variables (see page 76) are supported.

=

Is written as shown, indicating that an assignment is required.

Set Variables to a Particular Value

76 Network Control Language Programming Guide

expression

Represents the value that is to be assigned to the target variable. If no
expression is supplied the target variable is assigned a null value, and the
variable is automatically deleted. An expression is one of the following
constructs:

■ A variable or constant whose value is to be assigned to the target
variable.

■ A built-in function such as &CONCAT, &SUBSTR, and so on. When a
built-in function executes it produces a result that is used as the value
to be assigned to the target variable.

■ An arithmetic expression. The arithmetic calculation is performed to
yield a result, which is then used as the value to be assigned to the
target variable.

Complex Variables in Assignment Statements

Use of complex variables within an assignment is supported. A complex variable
requires multiple substitutions to determine the final variable required. For
example:

&&1

&A&1

An example of the use of complex variables is the accumulation of counts for
different values. A counter is initialized for each possible value. A single
statement can then be used to increment the associated counter.

Set Variables to a Particular Value

Chapter 5: Variables, Substitution, and Assignment 77

Example: Complex Variables in Assignment Statements

In this example, a variable (&1) can have the values A, B, or C and you want to
count the occurrences of each of these. This could be achieved in the following
way:

&CNTA = 0

&CNTB = 0

&CNTC = 0

 .

 .

 .

&DOWHILE &CNT&1 NE &LIMIT

 .

 .

 processing to receive input and set &1 to A, B or C

 .

 .

 &CNT&1 = &CNT&1 + 1

&DOEND

The assignment statement target (&CNT&1) will be resolved to &CNTA, &CNTB
or &CNTC prior to execution.

Implicit Assignment: Using &ASSIGN

The &ASSIGN statement, which is an NCL verb, is used to assign values to
multiple target variables in one operation. It is common for procedures to
operate with groups of related variables and to have the need to manipulate the
values of all the variables in a group.

Using explicit assignment statements to change the values of all the variables in
a group is less efficient than using the &ASSIGN statement.

&ASSIGN lets you define named or generic groups of source variables, and
transfer source variable contents to corresponding target variables, also named
specifically or generically. Similarly, groups of target variables can be assigned
null values and deleted in a single operation.

Set Variables to a Particular Value

78 Network Control Language Programming Guide

Implicit Assignment: Using Other NCL Verbs

While &ASSIGN is a verb designed specifically to allow multiple assignment
operations, many other NCL verbs also cause assignment of a new value to one
or more target variables as the result of their execution. Examples of these NCL
verbs are &PARSE and &SETVARS. A complete description of these verbs and
how to use them can be found in the Network Control Language Reference
Guide.

Verbs whose action results in retrieving information from an external source
(for example, &FILE, &PAUSE) place the data they receive into specified target
variables. An implicit assignment of values takes place as a result of the
execution of this type of verb.

Uppercase and Lowercase Variables

By default, when character data is assigned to a target variable, the data is
converted to uppercase.

If you want to manipulate lowercase character data, use the &CONTROL
NOUCASE processing option within your procedure. The NOUCASE option stops
the automatic translation of character data to uppercase on assignment
statements.

DBCS Support and Lowercase Data

If your system is operating with DBCS support active (SYSPARMS DBCS=YES),
then the system regards all data as a single case, and no uppercase or lowercase
translation is performed. In this execution mode, the &CONTROL UCASE option
is ignored.

NCL Table Manipulation

Chapter 5: Variables, Substitution, and Assignment 79

Variables and Storage Usage

Variables hold the data your procedures work with. This data occupies virtual
storage in your product region or partition. Therefore, the more variables you
create the more storage your procedures will use.

While your product attempts to optimize storage usage, you should design your
procedures to control the use of variables and avoid creating large numbers of
variables that are seldom referenced.

If the temporary use of an extremely large number of variables is required, then
assign a null value to these variables when they are no longer required to delete
them and reduce the storage required by the procedure.

The &ASSIGN statement can be used to nullify large groups of variables in a
single operation.

All storage used for NCL variables resides above the 16 MB line.

NCL Table Manipulation

The discussion of variables and substitution has so far concentrated on using
simple and complex variables as single data entities. You can also construct
tables of data using multiple individual variables using either of two common
techniques:

■ You can use complex variables, for example, &DATA&INDEX where the
variable &INDEX contains a number (for example, 1,2,3), so generating
variable names of &DATA1, &DATA2, &DATA3, and so on.

This technique is fairly efficient for small tables, but the overheads of
creating and managing large numbers of variables become significant when
dealing with large tables. However, it is only suitable for numeric table
indexes, or short alphanumeric indexes that do not contain any characters
that are invalid in an NCL variable name.

■ The second technique uses the complex variable approach described
previously, but each entry in the table is represented by 2 (or more)
variables (for example, &KEY&INDEX, and &DATA&INDEX). One contains the
key value, and the others the data values. The table is searched by
incrementing an index variable, and comparing the key variable to the
search value. When a match is obtained, the index variable is used to build
the complex variable name containing the data.

Vartable Facility

80 Network Control Language Programming Guide

Vartable Facility

A vartable is an in-storage table with the following attributes:

■ A name, assigned when the table is created, and used to refer to the table.

■ A scope, which can be one of:

PROCESS

(Default) Indicates that the table is only visible to the NCL PROCESS that
allocated it. It is automatically freed when the process terminates, if not
explicitly freed beforehand. Table names must be unique within a
process, but different processes can operate using different tables with
the same name.

REGION

Indicates that the table is visible to all NCL processes in a processing
region. For a signed-on user, this means all NCL processes running in
either NCL window, under the User Services menu, MAI script
procedures, and so on. The table is automatically freed when the region
terminates (for example, when the user signs off), if not explicitly freed
beforehand. Table names must be unique within the region, but
different regions can use different tables of the same name.

SYSTEM

Indicates that the table is visible to all NCL processes in this address
space. The table is automatically deleted when your product
terminates, if not explicitly freed sometime beforehand.

SYSTEM scope replaced GLOBAL in an earlier version but the use of
GLOBAL is supported.

AOM

Indicates that the statement refers to a mirrored vartable (see page 89)
if AOM has started.

■ A key length, from 1 to 256 characters long. Each table can have a different
key length.

Vartable Facility

Chapter 5: Variables, Substitution, and Assignment 81

■ Zero or more entries, consisting of:

– A key. Every entry must have a unique key, which can be numeric.

– Up to 16 items of data, or an unlimited number of data items if
DATA=MAPPED is specified. Each item can be from 0 (null, not present)
to 256 characters long. The data value is null if no data is provided for
an item when an entry is added.

– A counter field, which is initialized to 0 when an entry is created, and
can be reset to any value, or adjusted by any amount, on update calls.

– A user correlator field. This field is maintained by the system, and can
be used to provide update synchronization for tables shared between
NCL processes (that is, for tables with SCOPE= REGION or SYSTEM only).

The entries in a table are maintained in ascending key field value order. The
retrieval option of &VARTABLE allows sequential retrieval in ascending or
descending order.

&ZFDBK Values

The &ZFDBK system variable is set by the &VARTABLE verb to indicate the
success of the action. Most of the possible values are documented in the
Network Control Language Reference Guide. Vartables with SCOPE=AOM can
also return other &ZFDBK values. These are fully described under each
&VARTABLE option in the Network Control Language Reference Guide.

Vartable Facility

82 Network Control Language Programming Guide

&VARTABLE Manipulation Facilities

&VARTABLE provides the following table manipulation facilities:

ADD

Add an entry to a vartable.

ALLOC

Allocate a new vartable.

DELETE

Delete an entry from a vartable.

FREE

Free (unallocate) an existing vartable.

GET

Get (retrieve) an entry from a vartable.

PUT

Add or update (if there) an entry in a vartable.

QUERY

Query the existence of a vartable, and optionally return attribute
information.

RESET

Delete all entries in an existing vartable, but preserve the definition of the
table (like doing FREE/ALLOC).

UPDATE

Update an existing entry in a vartable.

The functions ALLOC, FREE, RESET, QUERY provide table-level manipulation.
ADD, PUT, UPDATE, DELETE, GET are used to manipulate entries in a table.

Vartable Facility

Chapter 5: Variables, Substitution, and Assignment 83

Shared Table Updating

Tables allocated with a scope of REGION or SYSTEM can be accessed by any
number of concurrently running NCL procedures. An NCL procedure can be
interrupted at any time and another procedure can be scheduled. If two
procedures are manipulating the same table, the possibility of logical corruption
exists.

Example: Shared Table Updating

In this example, assume that the entry with key KEY001 has a data content of 10
before the code is executed.
procedure 1 procedure 2

&K = KEY001

&VARTABLE GET ID=T1 +

 SCOPE=SYSTEM +

 KEY=K FIELDS=D VARS=DATA

&D = &D + 1 -* &D now 11

-*

-* system interrupts procedure 1, schedules procedure 2

-*

 &K = KEY001

 &VARTABLE GET ID=T1 +

 SCOPE=SYSTEM +

 KEY=K FIELDS=D VARS=DATA

 &D = &D + 1 -* &D now 11

 &VARTABLE PUT ID=T1 +

 SCOPE=SYSTEM +

 KEY=K FIELDS=D VARS=DATA

 &END

-*

-* system re-schedules procedure 1

-*

&VARTABLE PUT ID=T1 +

 SCOPE=SYSTEM +

 KEY=K FIELDS=D VARS=DATA

If the data in the table entry was being used as a counter, instead of having 12
(because of 2 adds), it only has 11, as the update done by procedure 2 is lost.

Vartable Facility

84 Network Control Language Programming Guide

There are three solutions to the problem:

■ If a single counter is being maintained in each entry, there is no need to get,
alter, then update the table entries. Instead, you can use the ADJUST= or
FIELDS=(ADJUST) options of the &VARTABLE PUT, UPDATE, or ADD operands
to change the system-maintained counter fields in the entry without
interference from any other procedure that is using the table. The previous
example could be written as:

&K = KEY001

&VARTABLE PUT ID=T1 SCOPE=SYSTEM +

 KEY=K ADJUST=1

This would insert a new entry if it did not already exist, and add 1 to the
(zeroed) counter, or update an existing entry by adding 1 to the current
counter value.

This approach is extremely useful for event counting, where the event (for
example, a particular message ID) is described by the key.

■ Use the &LOCK verb to lock the key value during the manipulation:

&LOCK TYPE=EXCL use key as resource name....

&VARTABLE GET ...

... manipulate the table entry

&VARTABLE UPDATE ...

&LOCK TYPE=FREE

The &LOCK verb is described in the Network Control Language Reference
Guide.

This approach allows almost any manipulation to take place. However, for
heavily accessed tables, the overheads of LOCK/UNLOCK could be excessive.
If you do not know the key of an entry in advance, you might need to lock
the entire table.

Vartable Facility

Chapter 5: Variables, Substitution, and Assignment 85

■ If we assume that minimal contention for any one table entry, a third
approach is to consider we can access it and only redo our work if someone
else actually changes the entry while we are performing calculations.

Remember that each entry in a vartable contains a user correlator. This is a
system-maintained update counter. An &VARTABLE GET operation can
request that the current value of the correlator for the requested entry be
returned in a nominated variable. The actual format of the correlator is of
no consequence, and should not be altered by the procedure.

When the procedure issues the &VARTABLE UPDATE, &VARTABLE PUT, or
&VARTABLE DELETE, the name of the variable containing the correlator
should be supplied in the VARS list (and .USERCORR specified in the FIELDS
list). The system checks that the correlator matches the current value of the
correlator in the current table entry, and only if they are the same, performs
the update or delete operation (if PUT, and the entry is new, the correlator
is ignored).

Following the update, the correlator in the table entry is given a new,
unique value (again, of no consequence to the procedure).

Obviously, if two procedures issue a GET for the same entry, with no
intervening updates to that entry, they will both be given the same
correlator value. But, if both then attempt to update that entry, supplying
the same correlator value, the second update will fail (with &ZFDBK set to
8), and it should reissue the GET, and redo the update logic.

Vartable Facility

86 Network Control Language Programming Guide

Example: Shared Table

&K = KEY001

.RETRY -* loop here if update fails on correlator

 -* mismatch

&VARTABLE GET ID=T1 SCOPE=SYSTEM KEY=K +

 FIELDS=(.DATA,.USERCORR) VARS=(D,UC)

 -*

 -* manipulate the entry data (in &D).

 -*

&VARTABLE PUT ID=T1 SCOPE=SYSTEM KEY=K +

 FIELDS=(.DATA,.USERCORR) VARS=(D,UC)

&IF &ZFDBK = 8 &THEN &GOTO .RETRY-* loop if

 -* changed

Note: Because no locks are held, there is no extra work to release those locks
should the procedure encounter an error condition while manipulating the data.

Also, if the GET is using an OPT= that retrieves a different key value record (for
example OPT=GEN), you do not need to know in advance what key value to lock.
If &LOCK had to be used in this case, you might need to lock the entire table.

Note: The use of the user correlator can be forced, for a particular table, by
specifying USERCORR=YES when allocating it.

(To contrast these two views, (2) can be regarded as the conservative approach,
and (3) can be regarded as the aggressive approach.)

Vartable Facility

Chapter 5: Variables, Substitution, and Assignment 87

Retrieval Techniques

The &VARTABLE GET statement allows an NCL procedure to retrieve an entry
from a vartable, placing the key, data, counter, and possibly user correlator, into
nominated NCL variables. The specific entry returned depends on both of the
following:

■ The value of the OPT= parameter on the &VARTABLE GET statement

■ The value contained in the NCL variable nominated on the KEY= parameter
of the &VARTABLE GET statement, unless OPT=FIRST or OPT=LAST is
specified, in which case the KEY= parameter is not permitted.

The default OPT= parameter is OPT=KEQ, which searches the nominated
vartable for an exact EQUAL KEY match.

Most of the other OPT= values are straightforward:

KGE

Retrieve the entry with the lowest key value greater than or equal to the
supplied key value.

KLE

Retrieve the entry with the highest key value less than or equal to the
supplied key value.

KGT

Retrieve the entry with the lowest key value greater than the supplied key
value.

KLT

Retrieve the entry with the highest key value less than the supplied key
value.

GEN

Retrieve the entry with the lowest key value generically equal to the
supplied key value (that is, match for as many non-blank characters in the
supplied argument, and the fewest non-blank characters after).

Two OPT= values allow retrieval of the entry with the lowest key (OPT=FIRST), or
highest key (OPT=LAST). When used in conjunction with the OPT=KGT or
OPT=KLT options in a loop, a table can be sequentially read (the &VARTABLE
GET description illustrates this).

Vartable Facility

88 Network Control Language Programming Guide

OPT=IGEN

The remaining OPT= value, OPT=IGEN (Inverse GENeric), has special use. The
definition is: Retrieve the entry with the longest key value equal to the supplied
key value, but at least one character long. For example, a search key of ABCDE
searches as follows:

1. For ABCDE; if no match is found, the search continues for...

2. ABCD; if no match, it would then search for...

3. ABC; and so on through...

4. AB and...

5. A

This retrieval option is especially suited for screening messages by message
identifier, where generic identifiers (for example, IEF) control all messages that
start with that identifier, and less-generic identifiers (degenerating to specifics,
such as IEF431I) override the generic identifier in a particular case.

By loading a table with these identifiers, an incoming message identifier can be
looked up in one GET OPT=IGEN statement, to find the most-specific match. This
avoids looping to examine lists of shorter and shorter identifiers.

&VARTABLE Syntax Descriptions

For a complete description of the &VARTABLE verb and its options, see the
Network Control Language Reference Guide.

Vartable Facility

Chapter 5: Variables, Substitution, and Assignment 89

Mirrored Vartables

Note: Mirrored vartables are only available if your region includes Automation
Services products.

A mirrored vartable can be used to control an AOM screening table. For
example, message IDs can be stored in a mirrored vartable, and message
suppression and routing can be controlled dynamically by adding or deleting
entries in the table. Using the LOOKUP screening statement, messages that are
matched by message ID can have various attributes assigned or altered.

The ability to dynamically add entries to a mirrored vartable, by screening table
code, allows statistics on such things as message ID to be easily accumulated.

If AOM is not started when a vartable with a scope of AOM is allocated, no
mirroring takes place. When AOM START is issued, all existing SCOPE=AOM
vartables are mirrored. When AOM STOP is issued, all mirrored vartable copies
are deleted; the standard vartable remains. If a mirrored vartable is allocated
while AOM is started, it is mirrored immediately.

Differences Between Mirrored and Standard Vartables

A mirrored vartable is a standard vartable, allocated with a scope of AOM.
SCOPE=AOM is similar to SCOPE=SYSTEM; any NCL procedure can refer to a
SCOPE=AOM vartable, but these vartables are logically separate to
SCOPE=SYSTEM. That is, there can be a table with an ID=TAB1 in both
SCOPE=AOM and SCOPE=SYSTEM.

Mirrored vartables are distinguished from standard vartables by using the
&VARTABLE verb to maintain mirrored vartables. This copy can be read from,
added to, and updated by an AOM screening table.

In z/OS, the mirrored copy is maintained in (E)CSA; in VM, it is maintained in
your product storage. SYSPARMS AOMMIRST=n sets the maximum amount of
storage in kilobytes that can be used by mirrored vartables.

Vartable Facility

90 Network Control Language Programming Guide

Update Mirrored Vartables

When a new entry is added to the mirrored vartable by an NCL procedure, the
new entry is automatically copied into the mirrored copy of the table.

The mirrored copy contains the following:

■ A copy of the key (always 16 characters)

■ A copy of the first 8 bytes of the DATA1 data field (blank padded if
necessary)

■ The .AOMID attribute

■ An encoded version of the .AOMATTR attribute string

■ A counter field .AOMCOUNT

When an existing entry is updated or deleted, the appropriate action is also
performed on the mirrored copy. The screening table LOOKUP statement
cannot update data in an entry, or delete an entry, but can update the count
field in the mirrored entry.

When a screening table LOOKUP statement adds a new entry, the downward
mirroring is not performed immediately, but is performed as soon as is
necessary. This happens when:

■ &VARTABLE GET retrieves an entry with that key value.

■ The entry can be sequentially accessed.

■ GET OPT=FIRST or LAST is specified. In this instance all pending mirroring is
performed immediately.

These rules allow the mirrored copy of the vartable to be accessed with no
serialization. This enhances the performance of the screening table.

Vartable Facility

Chapter 5: Variables, Substitution, and Assignment 91

AOM Attributes of Mirrored Vartables

Mirrored vartables support several extra data fields in a table entry.

.AOMID

This attribute allows a 1- to 12-character AOM identifier to be stored or
retrieved. When a LOOKUP statement assigns the ID attribute on a
successful lookup, this value is assigned as the ID of the current message
and is available to AOMPROC in the &AOMID system variable. If the
supplied value is blank, the AOMID in the table entry is regarded as not
specified, and a LOOKUP ASSIGN statement of ID will not override the
current ID value for the message.

.AOMATTR

This attribute lets you set a list of AOM message attributes. Each allowable
attribute is encoded into a 1- or 2-character value and placed into a
particular position in a character string. The blank and dash (-) have special
meaning. A blank in any position means that the associated attribute is to
be regarded as not specified. This means that when a LOOKUP statement
assigns an attribute from a table entry that is not specified, the current
attribute value is not changed. A dash (-) means that the current value of
the associated attribute is not to be changed and acts as a place holder
when updating attributes that are further down in the attribute string.

The following message attributes can be encoded in a .AOMATTR string:

Position 1

z/OS delete option. Y-YES, N-NO, F-FORCE.

Position 2

ALARM option. Y-YES, N-NO.

Position 3

MONITOR option. Y-YES, N-NO.

Position 4

INTENSITY option

H-HIGH, N-NORMAL, L-LOW.

Position 5

NRD option. Y-YES, N-NO, O-OPER.

Position 6

TRACE option. S-START, F-FINISH, *-This one.

Vartable Facility

92 Network Control Language Programming Guide

Position 7

ROUTE option. P-PROC, O-PROCONLY, M-MSG, B-BOTH, L-LOG, N-NO.

Refer to local/remote route options. If LCLROUTE and/or RMTROUTE
are also specified, they override any value set here. If both positions are
set and are different, this position is returned as not specified (-).

Position 8

HLITE option. N-NO, R-REVERSE, B-BLINK, U-UNDERSCORE,

Position 9

COLOR option. N-NO, B-BLUE, R-RED, P-PINK, G-GREEN, Y-YELLOW,
T-TURQUOISE, W-WHITE.

Positions 10-11

MSGCODE value. 2 hexadecimal digits.

Positions 12-19

8 user flags. Each can be Y-YES, N-NO.

Position 20

LCLROUTE option. P-PROC, O-PROCONLY, M-MSG, B-BOTH, L-LOG, N-NO

Position 21

RMTROUTE option. P-PROC, O-PROCONLY, M-MSG, B-BOTH, L-LOG,
N-NO

Position 22

DOM-TRACK option. Y-YES, N-NO.

Positions 23-30

8 RMTCLASS values. Each can be Y-YES, N-NO.

If a string shorter than 30 characters is specified it is padded to 30
characters with dashes. A new entry is regarded as having all attributes as
not specified prior to processing any supplied .AOMID or .AOMATTR values.

When retrieving a table entry, if the .AOMATTR values are retrieved, a
30-character string is always returned, however some positions can be
blank.

Vartable Facility

Chapter 5: Variables, Substitution, and Assignment 93

.AOMCOUNT

This attribute cannot be set or updated but can be retrieved by using the
&VARTABLE GET statement. This is a counter that is incremented if the
COUNT option is specified in the LOOKUP statement. It can be used as a hit
counter. A new table entry has this field initialized to zero before the
implied count if it is added by a LOOKUP statement with both ADD and
COUNT specified.

.AOMTHIT, .AOMTMISS, .AOMTADD

These attributes are counters. The counters can be accessed using these
field names in the &VARTABLE QUERY statement.

.AOMTHIT

Counts the total number of LOOKUP statements, with TOTAL specified,
that found a matching table entry.

.AOMTMISS

Counts the total number of LOOKUP statements, with TOTAL specified,
that did not find a matching table entry (including those that later
added a new entry).

.AOMTADD

Counts the total number of LOOKUP statements, with TOTAL specified,
that added a new entry. These are also counted in the .AOMTMIS, since
no match is found.

These counters are initialized to zero when a table is allocated or reset.

Chapter 6: Arithmetic in NCL 95

Chapter 6: Arithmetic in NCL

This section contains the following topics:

About Arithmetic in NCL (see page 95)
Integer Arithmetic (see page 96)
Real Number Arithmetic (see page 96)
Arithmetic Expressions (see page 98)
Arithmetic Operators (see page 99)
NCL Substitution and Expressions (see page 103)
Signed Numbers (see page 103)
Format Numbers (see page 104)

About Arithmetic in NCL

Arithmetic NCL statements yield the mathematical result of a calculation and
place it in a nominated variable.

Arithmetic is therefore performed as an explicit assignment operation. NCL
arithmetic statements are simply a special type of assignment statement.

NCL supports simple or compound arithmetic expressions involving positive or
negative numbers. NCL classifies numbers as follows:

■ Real numbers that are whole numbers, or numbers containing a decimal
fraction. Real numbers can be expressed using scientific notation. The range
of numbers supported are those with positive absolute values not higher
than +1E+70 and not less than +1E-70, and with negative absolute values
not higher than -1E-70 and not less than -1E+70.

■ Integer whole numbers only, which are a subset of the real number range,
but are not expressed in scientific notation, and lie in the range
+2147483647 to -2147483648.

Note: Positive and negative real numbers that lie in the range +1E-70 down to
-1E-70 are treated as 0.

Integer Arithmetic

96 Network Control Language Programming Guide

Integer Arithmetic

NCL performs integer arithmetic by default. This means that an expression that
contains only integers yields only integers as a result.

The problem with integer arithmetic is that it does not allow you to use decimal
calculations to get accurate results. The use of integer arithmetic is controlled
by the &CONTROL INTEGER operand.

Example: Integer Arithmetic

The following example yields the answer 2:

10 / 4 (10 divided by 4)

Real Number Arithmetic

NCL treats numbers with decimal points, or expressed in scientific notation, as
real numbers and uses floating point arithmetic in the evaluation of real number
expressions. The result of a real number calculation, as with integer arithmetic,
is placed in a target variable. Unlike integer arithmetic however, the result is not
a simple integer but is maintained in the scientific notation form.

The number 22.8 is therefore held in a variable as:

+.22800000000000E+02

which means:

0.228 times 10 to the power of 2

A special built-in function, &NUMEDIT (see page 104), is used to reformat real
number results into conventional format so that they can be displayed as
standard decimal numbers.

Real Number Arithmetic

Chapter 6: Arithmetic in NCL 97

&CONTROL REAL

NCL always uses real number arithmetic if the &CONTROL REAL operand is in
effect. This means that even if an operation contains only integers, real number
arithmetic is used and the result is placed in the target variable in scientific
notation form. It also means that calculations are performed accurately, so that
whereas, in the example of integer arithmetic given earlier, the result of dividing
10 by 4 is given as 2, with real arithmetic the answer would be the precise
answer of 2.5 but expressed in the result variable as:

+.250000000000000E+01

If you do not code &CONTROL REAL (which means that the default &CONTROL
INTEGER is in force), NCL automatically performs real number arithmetic if real
numbers are present in any arithmetic expressions. This automatic switch to
real number mode is transparent to your arithmetic functions but is of
significance if you want to perform comparison operations where real numbers
are involved.

Comparisons With Real Numbers

You must use &CONTROL REAL to switch to real number operation if you want
to perform comparisons of real numbers. This is because the &IF statement
does not know implicitly whether a variable containing a value such as:

+.986000000000000E+05

is a real number in scientific notation or simply a character string that starts
with a plus sign.

Arithmetic Expressions

98 Network Control Language Programming Guide

Arithmetic Expressions

A simple arithmetic expression in NCL consists of two numbers (real or integer)
separated by an arithmetic operator. For example:

1 + 2

497021 - 7832

0.08 + 76.889

38 - 97

1E5 - 22.9

44 / 11

A number can also be the name of a variable that contains a numeric value, for
example:

&A + 1

&COUNTER + &INCREMENT

The number on the left is operated on by the number on the right. There must
be one or more blanks between the operator and the numbers on each side of
it.

An expression can also be enclosed in parentheses, in which case blanks are not
mandatory between the numbers and the operator. Parentheses can also be
used to control the order in which the statement expressions are evaluated.

A compound arithmetic expression consists of two or more numbers and
operators, surrounded by parenthesis, which are processed according to the
standard rules of precedence to yield a result, for example:

(32 + 6) - (7.8 * 2)

would yield 38 - 15.6 giving an answer of:

+.224000000000000E+02 equivalent to 22.4.

Arithmetic Operators

Chapter 6: Arithmetic in NCL 99

Arithmetic Operators

The arithmetic operators are symbols used to specify the operation required
when a simple expression is evaluated. The operators used by NCL are, in
precedence groups:

**

Exponentiation

/

Divide (REAL number arithmetic)

/

Divide quotient (INTEGER arithmetic)

\

Divide remainder (INTEGER arithmetic)

*

Multiplication

-

Subtraction

+

Addition

Within each group, the individual operators have equal precedence. The
multiplication operator is therefore no more or less significant than the divide
operators. Processing of these operators takes place in strict left to right
sequence within the expression.

While most of the operators are familiar, the divide options differ depending
upon the arithmetic mode that is being used, REAL or INTEGER.

Arithmetic Operators

100 Network Control Language Programming Guide

Divide (REAL Arithmetic)

When a division operation is performed in which one or both numbers are real,
the result is placed in the target variable as a single real number in scientific
notation. The result is not split into quotient and remainder.

Example: Divide

&RESULT = (288.5 / 45)

yields a value in &RESULT of:

+.641111111111110E+01 equivalent to 6.41.

Divide Quotient (INTEGER Arithmetic)

When you are using integer arithmetic, the Divide Quotient operator (/)
produces division of the leftmost number by the rightmost number and yields
the quotient as the result.

Example: Divide Quotient

5 / 2 is 2.

Note: If you code &CONTROL INTEGER, where either operand is a non-integer
real number, the operation is treated as a real number division and yields a real
number result in the target variable.

Divide Remainder (INTEGER Arithmetic)

When you are using integer arithmetic the Divide Remainder operator (\)
produces division of the leftmost number by the rightmost number and yields
the remainder as a result.

Example: Divide Remainder

5 \ 2 is 1.

This operator is invalid for real number arithmetic and causes a syntax error
when encountered.

Arithmetic Operators

Chapter 6: Arithmetic in NCL 101

Divide by Zero

An attempt to divide by zero causes a syntax error and terminates the
procedure.

Precedence of Operators

In a simple expression there is only one operator so no precedence
considerations arise. The calculation is performed according to the operator.

In a compound expression, the evaluation proceeds from left to right with
operators being processed according to the standard rules of precedence. So, in
a compound expression such as:

(2 + 3 * 4 ** 2)

there are three operators, which are processed in the order:

**

Exponentiation

*

Multiplication

+

Addition

The expression is therefore processed in three steps as follows:

4 ** 2=16

16 * 3=48

48 + 2=50

So an assignment statement coded as:

&A = (2 + 3 * 4 ** 2)

results in &A being assigned a value of 50.

Arithmetic Operators

102 Network Control Language Programming Guide

Parentheses to Control Evaluation Order

Although optional, it is often easier to code an expression in parentheses so that
the formula being calculated is easier to read. In fact, you might have to code
expressions in parentheses to ensure that your calculation is processed as you
intend.

For example, the previous example shows that the result of the compound
expression:

(2 + 3 * 4 ** 2)

is 50.

However, you might have meant something different and coded:

(((2 + 3) * 4) ** 2)

In this case the expression contained in the deepest pair of parentheses is
always evaluated first, which causes the calculation to proceed as follows:

(2 + 3) =5

(5 * 4) =20

(20 ** 2)=400

which is obviously a completely different result from the one obtained when the
same expression was coded without parentheses.

The use of parentheses to delimit the simple expressions within a compound
expression is recommended for clarity of understanding.

NCL Substitution and Expressions

Chapter 6: Arithmetic in NCL 103

NCL Substitution and Expressions

Where a variable is to be used as input to an arithmetic expression, the variable
should be enclosed in parentheses to ensure that it is evaluated before an
operator is applied to it. This is important where the variable contains a signed
number.

For example, consider the following:

&A ** 2

When &A contains 5, the value is 25. However, if &A contained -5, the answer
would be -25. This is due to NCL substitution, which evaluates the expression as
follows:

-5 ** 2 = -(5 ** 2) = -25

To ensure that the sign of the variable value is interpreted correctly,
parentheses should be used as follows:

(&A) ** 2

This will give the correct answer of 25.

Signed Numbers

Positive and negative numbers are supported. The result of an expression which
yields a negative number carries a minus sign when assigned to the variable that
is the target of the assignment statement.

Example: Signed Numbers

&A = 5 - 8

assigns a value of -3 to &A.

&A = (288.5 * 2)

assigns a value of +.577000000000000E+03 to &A.

Format Numbers

104 Network Control Language Programming Guide

Format Numbers

When you need to display a number, either integer or real, that is held in a
variable, you will often have to format the output so that it is aligned correctly
in a field or column of numbers.

The &NUMEDIT built-in function lets you reformat any number held in a
variable by specifying three parameters:

■ The number of characters that the mantissa (the number to the left of the
decimal point) is to occupy, padded on the left with blanks if necessary.

■ The number of significant decimal positions that is required.

■ Optionally, whether the number is to be kept in exponent format.

Examples: &NUMEDIT Usage

In these examples the character ^ represents a blank.

&A = (2 * 88) results in (&A = 176)

&B = &NUMEDIT (0,2,0) results in &A(&B = 176.00)

&A = (2 * 88) results in (&A = 176)

&B = &NUMEDIT (5,2,0) results in &A(&B = ^^176.00)

&A = (4.8 + 6.998) results in (&A = +.117980000000000E+02)

&B = &NUMEDIT (8,5,) results in &A(&B = ^^^^^^11.79800)

&A = (2.3 ** 2) results in (&A = +.529000000000000E+01)

&B = &NUMEDIT (4,4,E) results in &A(&B = ^^^5.2900E+00)

For more information, see the Network Control Language Reference Guide.

Note: The width of the mantissa will always be at least the number of
characters in the mantissa, even if the mantissa parameter is less than the
actual number of characters. The first example shows this, where the mantissa
parameter is 0 but the mantissa length is three characters (176).

The E format of &NUMEDIT always returns one decimal digit to the left of the
decimal point.

Chapter 7: Designing Interactive Panels (Panel Services) 105

Chapter 7: Designing Interactive Panels
(Panel Services)

This section contains the following topics:

About Panel Services (see page 105)
Panel Design (see page 108)
Analyze Panel Input (see page 114)
Monitor Panel Return Codes (see page 116)
Handle Errors (see page 118)
Find Out Which Input Fields Have Changed (see page 126)
Output Padding and Justification (see page 127)
Input Padding and Justification (see page 130)
Process with Light Pens/Cursor Select (see page 132)
Intercept Function Keys (see page 133)
Panels on Different Screen Sizes (see page 135)
Control Cursor Positioning (see page 137)
Dynamically Alter Panel Designs (PREPARSE) (see page 138)
Control the Formatting of Input Fields (see page 143)
Retrieve Panels from Panel Libraries (see page 144)
Display Panels on OCS Windows (see page 145)
Asynchronous Panels (see page 147)
Panel Control Statements (see page 152)

About Panel Services

The Panel Services facility lets you design and implement your own full-screen
display formats. Using this facility, you can create NCL procedures for
communicating with terminals using full-screen displays, referred to as panels.
These panels enable NCL processes to display output data for you, and can be
designed with input fields for communicating back to these NCL processes:

■ Panel Services can be used by NCL processes executing in any NCL
environment associated with a display window.

■ Panel Services is supported by an online editor which can be used to create
and modify panels.

About Panel Services

106 Network Control Language Programming Guide

■ Panels can be defined to take advantage of such 3270 features as light-pen
and cursor selection. Full-color and extended highlighting support is
available on the appropriate terminals.

■ Internal editing and validation can be selected for individual input fields to
minimize the validation required within NCL procedures.

Logical Screen Manager

Display panels are monitored by a Logical Screen Manager (LSM) which means
that only changed data is written to the screen. This ensures that the minimum
amount of necessary data is transmitted. Wherever possible, LSM compresses
datastreams to ensure they operate efficiently. Using an LSM provides other
benefits:

■ The peppering effect of data as it is written to some displays is eliminated.

■ Screen flashing is minimized.

Create or Change Panels

You create and change panels by using an online editor-select option P from the
MODS : Primary Menu. You must be authorized to use this facility. Sites can limit
the number of concurrent users by restricting the amount of storage available
to the online editor. For more information about using the online editor, see the
Managed Object Development Services Programmer and Administrator Guide.

When you create a panel, you must give it a unique 1- to 12-character name,
which is nominated whenever a request is made to display the panel. Once
defined, panel details are stored in a VSAM database and can be updated as
required.

The standard split-screen facilities are very useful when designing panels: the
panel editor can be used on one window, while the panel test facility of Edit
Services displays the current version of the panel being developed on the other.

About Panel Services

Chapter 7: Designing Interactive Panels (Panel Services) 107

Invoke Full-screen Panels

Once defined and saved, a panel can be displayed immediately. Panels for
display are usually selected using an NCL procedure containing an &PANEL
statement. Other NCL statements such as &LOGON can nominate a panel for
display under specific circumstances.

If you try to display a panel that has not been defined, the procedure terminates
and displays an error message. You can use the &CONTROL PANELRC statement
to receive notification of processing anomalies (including referencing
non-existent panels). Your procedure can detect this fact and pre-empt
termination to continue processing.

Synchronous and Asynchronous Panel Displays

An NCL procedure can issue an asynchronous panel statement or a synchronous
panel statement:

■ Asynchronous panel statements provide a panel display, but the procedure
continues execution without waiting for input from the terminal.

■ If a synchronous panel is displayed, further processing of the NCL procedure
stops until you press an Enter key, a Function key, or provide some other
input from a light pen or cursor select key. Control then returns to the NCL
procedure following the &PANEL statement. The NCL procedure can then
process the data just entered from the terminal.

If a synchronous panel has been displayed for a specific length of time without
input from an operator, control can be returned to an NCL procedure
automatically. The default panel operation is synchronous.

Note: The synchronous state is simpler to understand than asynchronous, and
descriptions of panel operations assume synchronous operation unless stated
otherwise.

Panel Design

108 Network Control Language Programming Guide

Fixed and Variable Data in Panels

Panels contain a combination of fixed data and variable output data:

■ Fixed data is the screen captions, field identification text, and other static
screen information defined when the panel is created. This does not change
when the panel is displayed.

■ Variable output data is data generated by the system when the panel is
displayed. It replaces variables positioned within the panel created by the
editor. Data is extracted from NCL variables available at the time the panel
is invoked.

Variable output data can be displayed in one of the following:

■ Protected output-only fields (where the data comprises either system or
user variables).

■ Unprotected input fields, for any user variables. Once displayed, you can
enter data into the unprotected input fields. Panel Services then inserts this
data into the user variable for each field, so it is available for further
processing by NCL procedures.

Panel Design

Each panel design can contain a series of up to 62 lines, each 80 characters long,
and one or more fields. A field character precedes each field. The field character
identifies the attributes for that field. These attributes prescribe the following:

■ The field type (input, output, selector pen detectable, or null)

■ The intensity (brightness) of the display

■ Optional editing rules

■ The color and extended highlighting used when the field is displayed (for
appropriate terminals)

Design Guidelines

When creating or modifying a panel, enter panel details exactly as you want
them to display. To avoid confusing the users of your panel:

■ Give careful consideration to the use of highlighting and color. Ensure these
are not used excessively and do not detract from their effectiveness.

Panel Design

Chapter 7: Designing Interactive Panels (Panel Services) 109

■ Use color selection and message placements consistently for all panels in a
similar series.

■ Clearly identify and caption input fields to describe the input data you
require.

■ Do not have too many fields on a panel. If necessary, spread data or solicit
input over several panels to avoid crowding a single panel.

When a panel is to be displayed, its associated control statements are parsed
and any variable substitution performed. This allows control statements to be
dynamically tailored.

Field Characters

Each panel line has one or more fields, starting with a field character which
prescribes the field attributes.

You must specify a #FLD control statement for each field character your panel
requires. There are two ways of defining field characters:

Character mode

To specify character mode, use any special character other than an alpha or
numeric character, and excluding ampersand (&), blank, or null.

Hexadecimal mode

To specify hexadecimal mode, enter the hexadecimal value for the character
(for example, X'FA'). Use any hexadecimal value in the range X'01' to X'FF',
excluding the values X'0E', X'0F' and any values which correspond to the
EBCDIC values of characters not allowed on character mode fields.
Hexadecimal mode is used where you need a very large number of field
types within one panel and there are insufficient special keyboard
characters available to accommodate all of the field characters you require.

Note: If using hexadecimal mode field characters, you must prime the panel
definition with the preparse option to assign correct values to field character
positions in the actual panel.

Panel Design

110 Network Control Language Programming Guide

Field Types

Each field is allocated a field type which prescribes the method for processing
the field. Four field types are supported:

OUTPUT

Display only. No data can be entered from the screen.

INPUT

You can both display and enter data.

SPD

Selector pen detectable; data cannot be typed in.

NULL

Display only. Although unprotected, any data entered will be ignored.

Any mixture of these field types can be defined to suit the requirements for a
panel you are designing.

The field character that precedes each field determines:

■ The field type

■ The display characteristics of the field (intensity, color, highlighting)

■ (For input fields) the internal validation rules that must be obeyed for data
entered in that field. Such rules can specify, for example, that a field is
mandatory, must be numeric, cannot contain imbedded blanks, or must be
a valid date, and so on.

Each field character you define, occupies the equivalent screen position when
the panel is displayed, but appears as a blank character (the attribute byte).

The field proper starts from the next position after the field character, and
continues to the next field position on the same line, or to the end of that line
where there is no intervening field. Fields do not wrap round from one line to
the next.

Panel Design

Chapter 7: Designing Interactive Panels (Panel Services) 111

The three standard default field characters are:

%

high-intensity, protected (no input)

+

low-intensity, protected (no input)

_

high-intensity, unprotected (input, no validation).

These do not require definition by a #FLD statement.

Define any additional field characters you need using the #FLD statement. The
attributes for the defaulted characters can be modified. The #OPT statement
can be used to nominate alternative standard field characters, so that %, +, and
_ can be used within the panel and not processed as field characters.

Column 1 of each line of a panel must be a valid field character; if one is not
defined, the attributes for the second standard field character, (normally as +,
for low-intensity, protected) are used to replace any data incorrectly placed in
that column.

Sample Panels

The following sample panel uses default field characters.

%-------------------- Electronic Memo --------------------------
+SELECT OPTION%===>_SELECT+
% 1+Create a Memo
% 2+Send a memo
% 3+Display incoming memo
% 4+Delete an incoming memo
% 5+Exit from this function

In this sample panel, all fields preceded by % display in high-intensity and are
protected from data entry. All fields preceded by + display in low-intensity and
are also protected. The only field available for input is on the third line,
preceded by an underscore (_). The word SELECT identifies the NCL user
variable that receives the data you enter in this field once the Enter key is
pressed.

By default, the cursor is placed at the SELECT field, as this is the first (and only)
field requiring input; no other cursor position has been specified.

Panel Design

112 Network Control Language Programming Guide

Note: The ampersand (&) normally associated with a variable is omitted here.

Assume that our sample panel is called PANEL1. The NCL procedure to display
this panel is:

&PANEL PANEL1

When displayed, field characters are removed and the required terminal
attribute characters are substituted.

The following sample panel shows how the panel defined in PANEL1 appears,
when displayed.

Note: In all figures, the underline symbol (_) designates the cursor location.

-------------------- Electronic Memo --------------------------
 SELECT OPTION ===>_
 1 Create a Memo
 2 Send a memo
 3 Display incoming memo
 4 Delete an incoming memo
 5 Exit from this function

Override the Input Attribute

Panels generally contain a set of input and output fields which remain relatively
fixed. The fields might need to be switched from input to output as a group.

For example, a panel used to add, browse, and update a record has three
groups of input fields. They can be:

■ Only input during add

■ Input during an update (data fields)

■ Always input (command fields and so on.)

Panel Design

Chapter 7: Designing Interactive Panels (Panel Services) 113

Separate field attribute characters can be used and switched from TYPE=INPUT
to TYPE=OUTVAR.

There are however special cases (field level security for example) where
individual fields or unpredictable groups of fields might need to be protected.
The &ASSIGN OPT=SETOUT verb can be used to force the protection of a
variable, even if it appears in an input field in a panel. A check is made against
the current standard field attributes when a field is forced to output. If the
attributes of the field match the attributes of one of the standard input fields,
the field attributes (such as color and highlighting) are switched to the
attributes of the corresponding output field.

Control How Long a Panel is Displayed

Panels do not always have to accept operator input, although this is the most
common mode of operation. NCL interfaces to other system components allow
you to set up monitoring functions with display-only panels requiring little or no
operator entry.

Alternatively, you might want an NCL procedure to resume control if no input is
received within a certain time.

By default, whenever a synchronous panel is displayed, Panel Services waits
indefinitely for entry from an operator. However, the INWAIT operand of the
#OPT control statement lets you override this.

INWAIT lets you specify a time (in seconds or parts of seconds) for Panel
Services to wait before control is returned to the invoking NCL procedure.
During this interval, standard keyboard entry is accepted and processed
normally. Once the time interval expires, control returns to the invoking NCL
procedure.

This facility has many applications. For example:

■ If a panel displays many high-intensity fields for long periods, you can get
screen burnout. Use INWAIT to force a return of control after 20 minutes
(for example), when a blank panel replaces the display panel. The original
panel can be redisplayed when any input is received.

■ If you specify INWAIT=0, keyboard entry is not accepted and control returns
to the NCL procedure once the panel is displayed. This could be useful for
displaying a message while the NCL processes the last user request.

Analyze Panel Input

114 Network Control Language Programming Guide

For more information about the format of the INWAIT operand, see the #OPT
statement description in the reference section.

Note: The INWAIT function does not apply to asynchronous panel operations.

Analyze Panel Input

The &INKEY system variable returned to the NCL procedure following a
synchronous &PANEL statement, is set to indicate how input was made (for
example, by using the Enter key).

After a panel is displayed, Panel Services waits for either of the following
conditions:

■ For you to complete input (signaled by pressing the Enter key or some other
function key)

■ For a time-out interval to expire (where an INWAIT period has been
specified on the #OPT control statement)

The &INKEY system variable can be tested to find out whether operator input
has occurred, and to provide support for Function keys.

If the INWAIT time period elapses, &INKEY is set to a null value. If INWAIT did
not expire, &INKEY is set to one of the strings in the following table:

Entry Type &INKEY Value

Enter key ENTER

Function key F01 through F24 (always four
characters)

PA key PA1 through PA3

Light pen ENTER

Note: If &CONTROL PFKMAP is in effect, F13 to F24 are presented as F01 to F12.

&INKEY can be tested like any other system variable, for example:

&IF &INKEY EQ PF01 &THEN &PANEL HELP

Analyze Panel Input

Chapter 7: Designing Interactive Panels (Panel Services) 115

Remember that where INWAIT is used a null value can be set for &INKEY.
Therefore, &IF statements using &INKEY must allow for a possible null value
syntax error if &INKEY is eliminated from the statement by variable substitution.
This allowance can be achieved as follows:

&IF .&INKEY EQ . &THEN &GOTO .NOINPUT

Alternatively, to determine if the INWAIT timer has expired, use return codes
from Panel Services as requested by &CONTROL PANELRC. In this case, a return
code of 12 is set in the &RETCODE system variable to indicate the INWAIT time
interval has expired.

Note: For information about how to simplify testing individual function key
values by using direct branching techniques, see the &GOTO verb in the
Network Control Language Reference Guide.

Example: Panel Input

&CONTROL NOLABEL

.DISPLAY

 &PANEL MYMENU

 &GOTO .MENU&INKEY

 .

 .

 drops through if key not supported.

 .

 .

 &SYSMSG = &STR INVALID SELECTION

 &GOTO .DISPLAY

 .MENUENTER-* comes here if ENTER key pressed

 .

 .

 .MENUPF01-* comes here if F1 pressed

 .

 .

 .MENUPF02-* comes here if F2 pressed

 .

 .

The &GOTO .MENU&INKEY statement is resolved as an &GOTO to label
constructed by the current value of &INKEY suffixed to .MENU. If the label is not
found, the &GOTO acts as a null statement. Control passes to the next
statement because the &CONTROL NOLABEL operand was used.

Note: &INKEY is a system variable, so any attempt to assign a value into &INKEY
results in an error.

Monitor Panel Return Codes

116 Network Control Language Programming Guide

Monitor Panel Return Codes

An NCL procedure can enhance the available synchronous panel processing
options by issuing an &CONTROL PANELRC statement before displaying a panel.
If this option is used, then:

■ After panel processing has completed (that is, following execution of an
&PANEL statement) the &RETCODE variable is set to indicate a particular
processing condition and control passes to the NCL statement immediately
following the &PANEL statement.

■ The NCL procedure is responsible for testing the value of &RETCODE
immediately after the associated &PANEL statement and processing
accordingly.

Note: Failure to test &RETCODE can result in unexpected results.

Asynchronous &PANEL statements always set an &RETCODE completion code,
even if &CONTROL PANELRC has not been issued.

The return codes 0, 4, and 8 are set as a result of a process called internal
validation, which automatically edits input fields according to rules prescribed in
the panel definition. The internal validation process is described fully in
subsequent sections.

&RETCODE = 0

For synchronous panel operations: One or more panel input fields have
been modified. This return code indicates if any field data have been
changed. You could use this to decide if any further validation is required. If
data has been overtyped but not altered, it is not considered to have been
modified. If internal validation detects an error, return code 8 is set.

If &CONTROL FLDCTL is set and any input field on the panel has MODIFIED
attribute, the panel returns &RETCODE 0, even if the user did not physically
change the field.

For asynchronous panel operations: The panel has not been updated but
input has been received for an earlier display of the same panel. In this
case, you can now process the input, but you must reissue the &PANEL
statement to update the panel display.

Monitor Panel Return Codes

Chapter 7: Designing Interactive Panels (Panel Services) 117

&RETCODE = 4

The same as for return code 0, except that no input fields on the panel have
been modified. This return code can be used with return code 0 to decide
whether further data processing is required.

Important! Take care when using this return code if multiple interactions
with the panel can occur.

If internal validation detects an error, return code 8 is set. Return codes 0
and 4 apply only to the last input from the screen; if the procedure accepts
input from a screen where some data is changed and redisplays the panel,
which is then not modified, any earlier indications of data modification are
lost. Your procedures must allow for this situation.

This return code can be produced for both synchronous and asynchronous
panel operations.

&RETCODE = 8

An internal validation error has been detected. When &CONTROL PANELRC
is in effect, automatic error condition processing is suppressed so the
procedure is notified by this return code. The &SYSMSG variable contains
the text of the error message (for example, NOT WITHIN RANGE). The
&SYSFLD variable contains the name of the input field in error; this is the
name of the variable (minus the & prefix) which receives data entered into
that field. When this return code is set, the procedure can ignore the error
and take alternative action. For example:

■ Displaying a Help panel

■ Altering the error message text by assigning a new message to the
&SYSMSG variable

■ Redisplaying the panel by having the #OPT ERRFLD facility display the
error message unchanged and putting the cursor on the field in error. In
this case, the ERRFLD operand can be defined on the #OPT statement as
ERRFLD=&SYSFLD to simplify processing.

Using &RETCODE = 8 is an ideal way of providing an escape mechanism
(such as F3), even though the panel has been defined as having mandatory
fields REQUIRED=YES.

Handle Errors

118 Network Control Language Programming Guide

&RETCODE = 12

For synchronous panel operations: The panel display time-out limit specified
by the #OPT INWAIT operand has elapsed without any data entry. The
&INKEY system variable is null.

For asynchronous panel operations: This return code means that the panel
has been displayed and has returned to the issuing procedure. Successive
updates of the panel can be made by repeating the &PANEL statement;
&RETCODE = 12 indicates the panel will be redisplayed and that no input
has been received from earlier displays of the same panel. (The availability
of input from a previous display of the panel is indicated by return codes 0
or 4.)

&RETCODE = 16

The panel requested is not defined in the current panel library path, or else
some other serious error has occurred which prevents the panel displaying.
The &SYSMSG system variable contains a message describing the error
condition.

If &CONTROL PANELRC is not in effect, the following processing occurs:

■ If required, the NCL procedure determines whether any input fields have
been modified

■ Internal validation handles all error processing automatically and redisplays
the panel if errors occur.

■ The NCL procedure can only determine whether the INWAIT interval has
expired by testing the &INKEY variable for a null value.

■ If a requested panel does not exist in the current panel library path, or some
other serious error occurs, the NCL procedure terminates with an error
message.

Handle Errors

NCL procedures that use Panel Services usually contain processing to validate
operator input. If an error is detected, the procedure must be able to notify you
about the field in error and the nature of the error.

Errors can be identified by taking advantage of the variable substitution
performed for panel control statements, setting appropriate variables for the
#OPT control statement CURSOR and ALARM operands, moving suitable text
into an error message variable, and redisplaying the panel.

Handle Errors

Chapter 7: Designing Interactive Panels (Panel Services) 119

This technique works well, but places additional responsibility on your NCL
procedure to ensure that the correct variables are set and cleared later if no
errors are detected. (The situation is compounded as the number of fields on
the panel increases.)

It also helps the end-user if you highlight those fields in error by switching them
to another color, or by using facilities such as blinking or reverse-video on
terminals that support these facilities. This can also be achieved by substituting
variables in control statements, but becomes unwieldy.

Panel Services facilities are provided to simplify the notification of errors. These
facilities assume that error reporting includes additional attention-getting
operations such as:

■ Ringing the terminal alarm

■ Placing the cursor on the field in error

■ Displaying error message text

■ Changing the field in error to high-intensity

■ Switching the field in error to a different color

■ Displaying the field in error in reverse-video

The #ERR control statement lets you design a common environment (that is, a
common set of attributes) for error conditions. This environment is then applied
whenever an input field is nominated as being in error by one of the following
methods:

■ Using the &ASSIGN verb. (For more information about the syntax and usage
of the &ASSIGN verb, see the Network Control Language Reference Guide.
Note especially the OPT=SETERR and OPT=RESETERR options.) This method
lets you set the error attribute for multiple fields

■ By nominating the field name in the ERRFLD operand of the panel services
#OPT statement. This method allows the error attribute to be set for a
single field. The ERRFLD operand normally specifies a variable (for example,
ERRFLD=&SYSFLD). When the NCL procedure wants to mark a field as being
in error, it places the name of the field in error into the variable (for
example, &SYSFLD = FIELD1).

Handle Errors

120 Network Control Language Programming Guide

The following sample panel shows the ERRFLD operand in use.

#OPT ERRFLD=&SYSFLD
#ERR ALARM=YES INTENS=HIGH COLOR=RED HLIGHT=REVERSE
%-------------------- Name and Address ----------------------------
%&SYSMSG
+ENTER NAME%===_NAME +
+ENTER ADDR%===_ADDR1 +
+ENTER ADDR%===_ADDR2 +
+ENTER ADDR%===_ADDR3 +
+ENTER ADDR%===_ADDR4 +
+ENTER ADDR%===_ADDR5 +

This sample panel illustrates the use of the #OPT ERRFLD method. This method
requires two items in the panel control statements: a #OPT ERRFLD statement
and a #ERR statement.

Assume the ADDR5 field data must be XYZ; initially the panel is displayed with
the &SYSFLD variable set to null. Because the ERRFLD operand does not
nominate a field, the #ERR statement is ignored and the panel is displayed
normally.

On subsequent entry, the validation procedure checks the ADDR5 field and
determines that it is wrong. The &SYSFLD variable is set to the name of the
incorrect field (ADDR5), the appropriate error text is assigned to the &SYSMSG
variable, and the panel is redisplayed.

.DISPLAY

 &PANEL MYPANEL

 &IF .&ADDR5 NE .XYZ &THEN &GOTO .ERROR

 .

 . other processing

 .

.ERROR

 &SYSFLD = ADDR5

 &SYSMSG = &STR DATA MUST BE XYZ, RE-ENTER

 &GOTO .DISPLAY

When the panel is redisplayed, the cursor is positioned on the last address field,
ADDR5. This field is displayed in high-intensity and the terminal alarm rings (on
a color terminal, the field is displayed in reverse-video and red.)

Handle Errors

Chapter 7: Designing Interactive Panels (Panel Services) 121

To achieve the same result using &ASSIGN verb instead, remove the #OPT
statement from the panel definition and replace the line:

&SYSFLD = ADDR5

with

&ASSIGN OPT=SETERR VARS=ADDR5

This method lets you use the #ERR attributes for more than one field.

If the ADDR5 field is corrected and the panel redisplayed, the ADDR5 field
returns to its original attributes.

If the erroneous field is a non-display field (such as those used to enter
passwords), the overriding attributes that force the entered data to be
displayed are ignored and the field remains a non-displayed field.

Note: The variable &SYSFLD is a special variable, which is cleared by Panel
Services after the panel is displayed. If you use another variable such as
&ERROR, you should clear it after all error conditions are corrected. This
ensures that if another panel that uses the same variable is displayed, it does
not incorrectly signal an error. The &SYSMSG variable need not be cleared by
the NCL procedure because it is always reset to null by Panel Services before
returning to the NCL procedure.

Internal Validation

In your own NCL procedure, you can perform all necessary panel field
validations. Panel Services also includes powerful automatic editing capabilities
for this function, called internal validation.

The Electronic Memo panel definition shown in the previous sample panel does
not specify any Panel Services validation for data entered in the SELECT field.
You need to define an NCL procedure to validate input and redisplay the panel
with an error message.

Handle Errors

122 Network Control Language Programming Guide

You can do this by using the following code:

&CONTROL NOENDMSG

 .PANEL

 &PANEL PANEL1

 &IF .&SELECT EQ . &THEN &GOTO .ERR1

 &A = &TYPECHK (NUM) &SELECT

 &IF .&A NE .NUM &THEN &GOTO .ERR2

 &IF &SELECT GT 5 OR +

 &SELECT LT 1 &THEN &GOTO .ERR2

 .

 . other processing

 .

 .ERR1

 .

 . build error message and then redisplay the panel.

 .

 .ERR2

 .

 . build error message and then redisplay the panel.

Panel Services can provide internal validation at a field level. This can perform
most of the basic editing required for a field and can greatly simplify the
processing required within an NCL procedure.

The type of field validation you require can be specified on the #FLD statement
for the field character attributes marking the start of a field. Multiple #FLD
control statements can be used to specify different validation criteria for
individual fields.

The following sample shows a panel that includes the #FLD statement to define
validation requirements.

#FLD _ REQUIRED=YES BLANKS=TRAIL RANGE=(1,5)
%-------------------- Electronic Memo ----------------------------
+SELECT OPTION%===>_SELECT + %
&SYSMSG
% 1+Create a memo
% 2+Send a Memo
% 3+Display incoming memos
% 4+Display incoming memo
% 5+Exit from this function

Handle Errors

Chapter 7: Designing Interactive Panels (Panel Services) 123

In this sample, the standard underscore character (_) has been redefined:

■ To specify internal validation for ensuring the field is not omitted
(REQUIRED=YES)

■ So that trailing blanks but not imbedded blanks can be accepted
(BLANKS=TRAIL)

■ So that the entered data must be numeric and in a range from 1 to 5
(RANGE=(1,5))

Internal validation error processing depends on how the &CONTROL PANELRC
option is set. If &CONTROL PANELRC is not in effect, automatic internal
validation occurs; if it is in effect, advanced internal validation can be used.

Automatic Internal Validation

An input error detected by internal validation where &CONTROL PANELRC is not
in effect, is automatically handled by Panel Services. Control is not returned to
the NCL procedure.

When an error is detected by internal validation, Panel Services assigns the
appropriate error text to the &SYSMSG variable, automatically redisplays the
panel, rings the terminal alarm, and places the cursor at the field in error. The
display options defined within the #ERR statement for the panel are applied to
the erroneous field (for example, color or highlighting attributes).

When designing your panel, ensure the &SYSMSG variable field is described
somewhere on it:

■ Position the &SYSMSG field towards the top of the panel so any message it
includes is visible in split screen mode. If &SYSMSG is not provided, the
error text cannot display and the operator might not be able to find the
cause of error. (The error message texts used by internal validation are
detailed in the #FLD control statement EDIT operand.)

■ The field for the &SYSMSG variable is normally a high-intensity field, or
some prominent color such as red (for color terminals).

■ &SYSMSG always resets to a null value when control returns to the NCL
procedure if no internal validation is performed and no errors are detected.
This ensures an NCL procedure does not have to explicitly clear the
&SYSMSG variable if no error is found.

The &SYSMSG variable is not limited to internal validation uses. NCL procedures
can use it to display error messages or text assigned during processing.

Handle Errors

124 Network Control Language Programming Guide

Internal validation facilities cannot address all of the validation requirements a
procedure needs to perform. Like other user variables, the &SYSMSG variable
does not span different nesting levels; it is unique to each level unless made
available using the &CONTROL SHRVARS option.

Note: Assigning multiple word error text to the &SYSMSG variable requires that
you use the NCL &STR or &ASISTR function. For example:

&SYSMSG = &STR INVALID SERIAL NUMBER

&SYSMSG = &ASISTR RESOURCE NOT ACTIVE

Advanced Internal Validation

While the automatic internal validation greatly simplifies an NCL procedure,
sometimes you might want a procedure to continue processing when a
validation error is detected, bypassing the automatic reshow normally
performed. For example, if a field is specified as mandatory (REQ=YES),
automatic internal validation forces the field to be entered and issues this
message:

REQUIRED FIELD OMITTED

Alternatively, you might want a system where a field is mandatory unless F1 is
pressed to display a Help panel, or where F12 indicates the entry is to be
bypassed. You might also want to change the text of the messages supplied by
internal validation.

An &CONTROL PANELRC statement issued before an &PANEL statement tells
Panel Services processing that the NCL procedure is designed to cater for a
range of &PANEL return codes. These return codes accommodate a variety of
conditions possible when processing a panel, and signify there is no automatic
reshow performed after an error is detected.

If &CONTROL PANELRC is used, the procedure receives control if internal
validation detects that a required field has been omitted (or some other error).
The name of the field in error is supplied in a variable called &SYSFLD and the
text of the error message registered by internal validation is supplied in the
&SYSMSG variable.

In the previous example, where F1 and F12 require special processing, the
procedure tests &INKEY for PF01 or PF12, ignores the error, and reacts as
required. If F1 or F12 is not pressed, the procedure redisplays the panel with the
error message.

Handle Errors

Chapter 7: Designing Interactive Panels (Panel Services) 125

When redisplaying the panel, the &SYSFLD variable containing the name of the
field in error can be referenced on the #OPT statement ERRFLD operand
(ERRFLD=&SYSFLD). This initiates the processing which positions the cursor on
the field in error (and possibly a #ERR statement designating special attributes
to be applied to the field in error). The text in the &SYSMSG variable can be
modified if required, or assigned into another variable.

If a procedure uses this technique, it must be written to handle all return codes
possible from the &PANEL statement.

If no internal validation is performed or no internal validation error is detected,
&SYSMSG and &SYSFLD are set to a null value when control is returned to the
NCL procedure after the &PANEL statement. This ensures that the NCL
procedure does not have to explicitly clear variables if an error is not found.

Like &SYSMSG, the &SYSFLD variable is not limited to internal validation uses. It
can also be used by the NCL procedure for its own error indications:

■ Once a procedure has detected an error it can assign error message text
into the &SYSMSG variable, place the name of the field in error in &SYSFLD,
and redisplay the panel.

■ If the panel uses the ERRFLD option on the #OPT statement, the error
message is displayed and the cursor positioned at the field in question. Any
other error processing defined on the #ERR statement is also performed.

Like other user variables, the &SYSFLD variable does not span different NCL
procedure nesting levels and is unique to each level unless shared under
&CONTROL SHRVARS. Regardless of other uses, &SYSFLD resets to null after the
&PANEL verb unless an error is detected by internal validation.

Find Out Which Input Fields Have Changed

126 Network Control Language Programming Guide

Find Out Which Input Fields Have Changed

NCL procedures need a simple mechanism for finding out which input fields
have been modified on a display panel with multiple fields. This lets you validate
only those fields which were changed.

When an NCL procedure executes with the &CONTROL FLDCTL option set, Panel
Services processing automatically creates a stack of all modified input fields
returned from the terminal. This stack is built by scanning the input panel line
by line from top to bottom, and from left to right. The system variable
&ZMODFLD is primed with the name of the input field variable that is logically at
the top of the stack. Each time the &ZMODFLD variable is referenced, its value
changes to the name of the variable associated with the next modified input
field on the panel. When the procedure processes the last panel input field
variable name, &ZMODFLD is reset to a null value.

Example: Find Out Changed Input Fields

&CONTROL NOLABEL

 .

 .

 .

&PANEL GETABC -* Display panel containing input fields

 -* &A, &B, and &C.

 .

 . -* User enters fields A and C.

 .

 . -* Procedure resumes processing

 . -* &ZMODFLD = A

 .

.INPUTLOOP

 &GOTO .&ZMODFLD -* Process next modified field -* variable

 &GOTO .NEXTPANEL -* No more fields...issue next panel.

.A... -* Process input variable A. This is

 -* the first reference to &ZMODFLD,

 -* whose value now changes to the next

 -* variable name on the stack, that is, C.

&GOTO .INPUTLOOP

.C... -* Process input variable C. This is

 -* the second reference to &ZMODFLD,

 -* whose value now becomes null, since C

 -* is the last modified field variable.

&GOTO .INPUTLOOP

Output Padding and Justification

Chapter 7: Designing Interactive Panels (Panel Services) 127

An NCL process can have one active &ZMODFLD stack at a time. If another panel
is displayed while the &CONTROL FLDCTL option is still in force, then the current
&ZMODFLD stack is rebuilt. &ZMODFLD variables that are not accessed remain
in the stack if they are in the panel just displayed.

Alternatively, if &CONTROL NOFLDCTL is issued to suspend the &ZMODFLD
stack generation, any number of other panels can be presented without
destroying the &ZMODFLD stack. The &ZMODFLD stack is available for use
unchanged as soon as &CONTROL FLDCTL is reissued. Certain options of the
&ASSIGN verb help manipulate the &ZMODFLD stack. For more information
about the &ASSIGN verb, see the Network Control Language Reference Guide.

Output Padding and Justification

Careful use of padding and justification greatly enhances the usability of panels
for end-users. Panel Services includes extensive facilities to manipulate
displayed data. Padding and justification qualities are specified by the #FLD
statement. There are two justification categories—field level justification and
variable level justification. Both can be used concurrently.

Field Level Justification

This is performed on an entire field as delimited by defined field characters.
Field justification analyzes the entire field, strips trailing blanks, and pads and
justifies the remaining data. The #FLD operands controlling field level
justification are JUST and PAD.

The various ways data can be manipulated are best described by a series of
examples. These examples show a mix of fields each defined with a different
field character and each showing a different display format. Study the #FLD
statements and observe the results achieved.

#NOTE This sample panel definition gives examples of the

#NOTE use of field level justification and padding.

#FLD#

#FLD$ JUST=RIGHT

#FLD@ JUST=LEFT PAD=<

#FLD? JUST=RIGHT PAD=>

#FLD/ JUST=CENTER PAD=.

#&VAR01 +

$&VAR02 +

@&VAR03 +

?&VAR04 +

/&VAR05 +

Output Padding and Justification

128 Network Control Language Programming Guide

Assume the following variable assignment statements are executed by the NCL
procedure before displaying the sample panel:

&VAR01 = &STR Left justified null padding

&VAR02 = &STR Right justified null padding

&VAR03 = &STR Left justified with padding

&VAR04 = &STR Right justified with padding

&VAR05 = &STR Center justified with padding

The default values are JUST=LEFT and PAD=NULL, as shown by the first line in
the following example, where field character # is used with no attributes other
than the defaults. The sample panel is displayed as follows:

Left justified null padding

 Right justified null padding

Left justified with padding<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>Right justified with padding

..............Center justified with padding...............

Output Padding and Justification

Chapter 7: Designing Interactive Panels (Panel Services) 129

Variable Level Justification

This operates independently of field level justification, and applies to the data
substituted for field variables defined as requiring variable level justification.
Variable level justification is designed to help tabulated output, where data of
differing lengths is substituted for a series of variables and where the normal
substitution process would disrupt display formats. The #FLD operands that
control field level justification are VALIGN and PAD.

The substitution process normally substitutes data in place of the &variable
without creating additional characters. Thus, if a variable (for example,
&VARIABLE) is replaced by data, any characters following this are moved left to
occupy any spaces remaining after substitution (that is, if spaces are freed going
from a long variable name to a shorter data length).

#NOTE This sample panel definition gives examples of the

#NOTE use of variable justification, padding, and field

#NOTE justification.

#FLD # VALIGN=LEFT

#FLD $ VALIGN=RIGHT

#FLD @ VALIGN=CENTER

#FLD ? VALIGN=LEFT PAD=.

#FLD / VALIGN=RIGHT PAD=.

#FLD } VALIGN=CENTER PAD=.

#FLD ! VALIGN=LEFT JUST=RIGHT PAD=.

#&VARIABLE other data+

$&VARIABLE other data+

@&VARIABLE other data+

?&VARIABLE other data+

/&VARIABLE other data+

}&VARIABLE other data+

!&VARIABLE other data+

Variable level justification controlled by the VALIGN operand of the #FLD
statement, lets you influence the way substitution is performed.

Note: Variable level justification is only performed if the length of the data
being substituted is less than the length of the variable name being replaced,
including the ampersand (&).

Assume the following variable assignment statement has been executed by the
NCL procedure before displaying the sample panel:

&VARIABLE = Data

Input Padding and Justification

130 Network Control Language Programming Guide

&VARIABLE is the only variable within a field which contains the words 'other
data'. Where both field justification and variable alignment are used, the
padding character applies to both, as shown by the last line of the example for
field character !. The sample panel is displayed as follows:

Data other data

 Data other data

 Data other data

Data..... other data

.....Data other data

..Data... other data

...........................Data..... other data

Input Padding and Justification

Fields to which the PAD and JUST operands of the #FLD statement are applied
can be defined as input fields. If an input field is primed with data during the
display process, the alignment of data within that field when displayed is as
described in the previous section on Output Padding and Justification, except
that JUST=CENTER is treated as JUST=LEFT. When Panel Services processes input
from the screen, input fields defined using the PAD and JUST operands are
processed using the following rules:

■ Trailing blanks and pad characters are stripped off, unless the pad character
is numeric.

■ If JUST=RIGHT is specified for the field, then leading blanks and pads are
stripped off (including numeric pads).

■ If JUST=ASIS is specified for the field, then trailing blanks and pads are
stripped off, but leading blanks and pads remain intact.

#NOTE This sample panel definition gives examples of the

#NOTE use of input padding and justification.

#FLD # TYPE=INPUT

#FLD $ TYPE=INPUT JUST=RIGHT

#FLD @ TYPE=INPUT PAD=< JUST=LEFT

#FLD ? TYPE=INPUT PAD=> JUST=RIGHT

#FLD / TYPE=INPUT PAD=0 JUST=LEFT

#FLD } TYPE=INPUT PAD=1 JUST=RIGHT

#VAR01 +

$VAR02 +

@VAR03 +

?VAR04 +

/VAR05 +

}VAR06 +

Input Padding and Justification

Chapter 7: Designing Interactive Panels (Panel Services) 131

Assume the following variable assignment statements are executed by the NCL
procedure before displaying the sample panel:

&VAR01 = Walt

&VAR02 = Tom

&VAR03 = Dick

&VAR04 = Harry

&VAR05 = John

&VAR06 = Vicky

The sample panel is displayed as:

WALT

 TOM

DICK<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>HARRY

JOHN000000000000000000000000000000000000

11111111111111111111111111111111111VICKY

If control is passed back to the NCL procedure without any data entered into the
input fields, the variables are set to the following values:

&VAR01 = WALT

&VAR02 = TOM

&VAR03 = DICK

&VAR04 = HARRY

&VAR05 = JOHN

&VAR06 = VICKY

Note: If the line John000... had been modified, it would have been padded to
the right with zeros.

The variable values are translated to uppercase because the default for input
fields is CAPS=YES.

Process with Light Pens/Cursor Select

132 Network Control Language Programming Guide

Process with Light Pens/Cursor Select

Panel Services lets you use both light pens and the cursor select key. Such fields
are termed selector pen detectable, or SPD fields.

Specify an SPD field by the TYPE=SPD operand on the #FLD statement. An SPD
field can be regarded as an input field and the processing and formatting
options apply accordingly. However, you cannot enter data into an SPD field
because it is protected.

An SPD field must nominate a single variable (minus the &). This field can
contain data to be displayed when the panel is displayed. It is set to the word
SELECTED if you do either of the following:

■ Press the light pen against the screen anywhere in the field.

■ Press the CURSOR SELECT key when the cursor is positioned anywhere in
the field.

In accordance with hardware requirements, a field specified as TYPE=SPD must
start with either ampersand (&), question mark (?), or a blank (). These
characters are termed designator characters and have the following meaning:

■ A question mark (?) designates a selection field. If you choose this field, the
? is changed to a greater-than symbol (>) by the hardware to show
successful selection (it can be deselected by reselecting it once more).

■ An ampersand (&) designates the first format for an attention field-select
this field in the normal way. (Selecting this field is also equivalent to
pressing the Enter key, which transmits all modified screen data.)

■ A blank designates the second format of an attention field. It operates like
the & field, but modified data is not transmitted.

The designator character can be followed by one or more blanks and then the
name of the variable (without the &) that is to receive notification of the
selection. For example:

#NOTE This sample panel definition gives an example of the

#NOTE use of SPD fields.

#FLD / TYPE=SPD

/? SELECTION1

If you use a light pen or the cursor select key to select this field, the variable
&SELECTION1 is set to the value SELECTED on return to the NCL procedure.

Intercept Function Keys

Chapter 7: Designing Interactive Panels (Panel Services) 133

Mix SPD Fields with Normal Input Fields

While you can mix TYPE=SPD fields with TYPE=INPUT fields, some care must be
taken.

A normal input field (TYPE=INPUT) lets you key data into it. This data is
transmitted to the system when the Enter key or a Function key is pressed. If an
attention SPD field (designated by the blank selection character) is used to
replace the Enter key, data entered into normal input fields is not transmitted,
and the variables associated with those fields are set to null. Therefore, CA
recommends that when you mix SPD fields with normal input fields, you use
only SPD fields specifying ? or & designator characters.

Hardware Restrictions

When using a light pen, you must observe some hardware requirements if you
define multiple fields on the one line:

■ A minimum of three blank or null characters must precede an SPD field.

■ A minimum of three blanks or nulls must follow displayed data in the field
before the next field starts.

These restrictions do not apply if you are using the CURSOR SELECT key.

Intercept Function Keys

By default, Panel Services intercepts certain function key actions in an identical
manner to the rest of the system, as follows:

F2 or F14

Screen split operation

F3 or F15

Terminate NCL procedure

F4 or F16

Terminate NCL procedure

F9 or F21

Screen split/swap operation

Intercept Function Keys

134 Network Control Language Programming Guide

While the use of these keys is transparent to NCL procedures invoking
full-screen panels, this might not always be desirable. A procedure might want
to intercept all function keys and invoke alternative functions.

Panel Services offers two levels of function key interception which can be
requested using an &CONTROL verb, before issuing the &PANEL statement
where they are to apply. To simplify processing, you can perform optional
function key mapping, where F13 to F24 are mapped to their F1 to F12
counterparts.

&CONTROL PFKSTD

PFKSTD stops the interception of F3/15 and F4/16, which normally
terminate the invoking NCL procedure. Using these keys returns you to the
NCL procedure with the appropriate value set in the &INKEY system
variable. F2/F14 and F9/F21 operate as normal, providing screen split/swap
facilities.

&CONTROL PFKALL

PFKALL lets you allocate alternative functions to all Function keys, or to
block screen splitting, if required. PFKALL stops all Function key
interceptions and returns to the NCL procedure with the appropriate value
set within &INKEY. In this case, screen split and swap facilities are not
available unless your NCL procedure issues the appropriate SPLIT or SWAP
command when the associated keys are pressed.

&CONTROL NOPFK

Returns PFKSTD or PFKALL to standard operation.

&CONTROL PFKMAP

This option can simplify the number of keys which a procedure must allow
for.

PFKMAP maps F13 to F24 against their counterparts before presenting them
to the NCL procedure in the &INKEY system variable. When this option is in
effect, the procedure does not have to cater for F13 to F24 because F13 is
presented as F1, F14 is presented as F2, and so on.

&CONTROL NOPFKMAP

NOPFKMAP turns off function key mapping.

Function keys are presented to the procedure unchanged, so that all
function keys are available for separate uses.

Note: Terminals under EASINET control always operate as though &CONTROL
PFKALL is in effect, and cannot operate in split screen mode.

Panels on Different Screen Sizes

Chapter 7: Designing Interactive Panels (Panel Services) 135

Panels on Different Screen Sizes

The maximum number of display lines that can be defined for a panel is 62. This
does not include control statements. It is possible that a panel may exceed the
size of the terminal or the size of the current operational window (if operating
in split-screen mode). If this happens, Panel Services truncates the panel.

An invoking NCL procedure can use the &LUROWS and &LUCOLS system
variables to determine the dimensions of the processing window. The &ZROWS
and &ZCOLS system variables can be used to determine the dimensions of the
physical terminal. The &ZCURSFLD and &ZCURSPOS system variables are used to
determine the actual field which contains the cursor. Using these variables, a
procedure can tailor its processing accordingly.

&LUROWS Variable

The &LUROWS system variable is provided to let an NCL procedure test the
number of screen lines currently available for displaying a full-screen panel.

When in split screen operation, this is the number of lines available within the
current screen window. Use &LUROWS for multi-screen output displays to
determine the maximum number of lines that can be displayed in the available
operational window.

You are responsible for subtracting any fixed overheads associated with
displaying the panel, such as heading lines, and so on, and for operating within
the available space. You should also allow for small windows, where there might
not be sufficient lines to display data.

&LUCOLS Variable

The &LUCOLS system variable lets an NCL procedure test the number of screen
columns currently available for displaying a full-screen panel. &LUCOLS can be
used for multiscreen output displays to determine the maximum width that can
be displayed in the available operational window.

You should cater for small windows, where there might not be sufficient
columns to display data.

Panels on Different Screen Sizes

136 Network Control Language Programming Guide

&CURSCOL Variable

The &CURSCOL system variable is set on returning from an &PANEL statement
and is used to determine the column where the cursor was positioned when the
last entry was made.

If operating in split screen mode, the value in &CURSCOL is relative to the start
of the operational window regardless of where that window is positioned on
your screen. If the last entry was caused by the INWAIT timer expiring, the value
returned in &CURSCOL is unreliable.

&CURSROW Variable

The &CURSROW system variable is set on returning from an &PANEL statement
and can be used to determine the row where the cursor was positioned when
the last entry was made.

If operating in split screen mode, the value in &CURSROW is relative to the start
of the operational window regardless of where that window is positioned on
your screen. If the last entry was caused by the INWAIT timer expiring, the value
returned in &CURSROW is unreliable.

Determine the Field Location of the Cursor

The &ZCURSFLD and &ZCURSPOS system variables are used to determine the
actual field location of the cursor. This is useful for providing context sensitive
help.

The &ZCURSFLD system variable contains the name of the field the cursor was
in. This applies to TYPE=INPUT and TYPE=OUTVAR fields only-output fields have
no name.

The &ZCURSPOS system variable provides the offset within that field where the
cursor was positioned.

Control Cursor Positioning

Chapter 7: Designing Interactive Panels (Panel Services) 137

Control Cursor Positioning

The cursor position on a panel is controlled either implicitly by Panel Services
(for example, to identify a field in error), or by an explicit request from the
procedure issuing the panel.

For explicit cursor positioning, use the #OPT statement CURSOR operand. Either
specify the name of an input field defined on the panel, or supply screen
coordinates as a row and column number.

■ If using the name of an input field, enter the name of the variable minus the
ampersand, as defined in the panel to receive any data entered in that field.
Define the CURSOR operand as:

#OPT CURSOR=&CURSOR

Then assign the required field name into the &CURSOR variable before
displaying the panel. For example:

&CURSOR = FIELD2 -* note omission of ampersand

&PANEL MYPANEL

■ Alternatively, specify explicit cursor positioning by supplying the row and
column where the cursor is to be positioned. The CURSOR operand of the
#OPT statement can also be used, but then the row and column coordinates
must be specified. For example:

#OPT CURSOR=&ROW,&COL

Row and column coordinates are then set from the procedure before
displaying the panel. For example:

&ROW = 10

&COL = 30

&PANEL MYPANEL

Note: If the row and column coordinates that you specify lie outside the
boundaries of the current operating window, the cursor is positioned on row 1,
column 1 of the window.

A procedure can also influence the implicit positioning of the cursor by Panel
Services. Use the &ASSIGN SETERR operand to let the procedure identify one or
more fields which can be classified as being in error.

Alternatively, a procedure can use the #OPT panel statement ERRFLD operand
to identify a particular field which is in error.

Dynamically Alter Panel Designs (PREPARSE)

138 Network Control Language Programming Guide

Cursor Positioning Hierarchy

Cursor location is determined in the following sequence:

■ The first field in error detected by internal validation

■ A field identified as being in error by #OPT ERRFLD

■ The first field designated as being in error by &ASSIGN OPT=SETERR

Any field designated by &ASSIGN OPT=SETERR that is also identified by
#OPT CURSOR takes precedence.

■ A field or position identified by #OPT CURSOR=loc

■ The first input field processed top to bottom, left to right

■ The upper left corner of the panel (row 1, column 1 of the window)

■ If the selected field cannot be displayed within the current window
dimensions, the upper left corner of the panel (row 1, column 1 of the
window)

Dynamically Alter Panel Designs (PREPARSE)

When a panel is designed, the location and layout of input and output fields
within it is normally fixed when the panel is created using Edit Services. This
means the field characters that define the location of fields (by default %, +, or
_), are positioned as required and remain fixed. It is the data or variables within
those fields that then change.

However, under some circumstances, you might need to dynamically alter the
attributes of fields, or to add or delete entire fields. For example, you might
want the color and highlighting for a field to change depending on the data
content. (This might be necessary if you are designing a panel that monitors
network status, where you want to vary the color of a field to alert an operator).

Some scope for doing this exists by supplying variable data for use on #FLD
statements where the variable data is used to alter the characteristics of the
field. However, the actual addition or deletion of fields cannot be achieved
using this technique and it becomes cumbersome if the attributes of many fields
must be altered.

Panel Services lets you dynamically create panel definitions by using a
preparsing concept. Preparsing is requested by the #OPT panel statement
PREPARSE operand, and makes a preliminary scan of the required panel lines
before building the panel.

Dynamically Alter Panel Designs (PREPARSE)

Chapter 7: Designing Interactive Panels (Panel Services) 139

During this preliminary phase, field characters are ignored and substitution used
to change a panel line in any way you require. Only after preparsing is complete,
is the normal panel building process performed.

Substitution normally uses the occurrence of ampersand (&) to indicate the
start of a variable string. These strings can be resolved to reflect the content of
the variable, as set by the procedure before the &PANEL statement.

The PREPARSE operand has the following format:

#OPT PREPARSE=($,S)

#OPT PREPARSE=(!,D)

The first character in the parentheses defines the alternative substitution
character (other than an &) to be used during the PREPARSE operation.

The second character specifies the alignment option for the display fields
affected by PREPARSE substitution. These options (for Dynamic and Static
preparsing) are explained in the following sections.

The alternative substitution character (for example, a dollar sign) is used as the
substitution character for the preparse stage of processing. The panel line is
scanned for occurrences of the preparse character and the variables are
isolated. The variables are then resolved using the values of the corresponding
variables set from the procedure. Using an alternative substitution character
allows panels to contain a mix of conventional and preparse fields.

Before displaying this panel (see the following sample, which shows the panel
before PREPARSE substitution), the procedure tests the values in the variables
&FIELD2 and &FIELD3 and appends the appropriate field character to display
the field. In this example, using the > character displays the field in red and
reverse video, but using the ? character displays the field in yellow without any
other highlighting.

#OPT PREPARSE=($,d) INWAIT=60
#FLD > COLOR=RED HLIGHT=REVERSE TYPE=OUTPUT
#FLD ? COLOR=YELLOW TYPE=OUTPUT
%-------------------- Network Monitor --------------------------
+$FIELD1

 +NETWORK STATUS AS AT &TIME ON &DATE3
 +NCP1 is currently$FIELD2

 +NCP2 is currently$FIELD3

Dynamically Alter Panel Designs (PREPARSE)

140 Network Control Language Programming Guide

In this example, FIELD2 and FIELD3 are output fields. FIELD1 is an output field
too, by default, but the logic below also converts the FIELD1 position to an input
command line if the user ID happens to be USER01. The value assigned to
FIELD1 actually contains the new field characters that are to be substituted into
the panel definition. The preparse function then builds the new fields before
the panel is displayed, so that an input field appears on the terminal.

The following logic shows this procedure:

&IF &STATUS2 EQ INACT &THEN &FIELD2 = >&STATUS2

&ELSE &FIELD2 = ?&STATUS2

&IF &STATUS3 EQ INACT &THEN &FIELD3 = >&STATUS3

&ELSE &FIELD3 = ?&STATUS3

&IF &USERID = USER01 &THEN &FIELD1 = &STR Command +

 %===>_COMMAND

&PANEL MYPANEL

Note: Although the variables on the panel start with the preparse substitution
character ($), they are still referred to in the NCL procedure as starting with an
ampersand.

Preparsing is regarded as a completely separate substitution phase. Therefore, if
a preparse character other than an & is designated, this process can substitute
data that includes other variables, which are resolved when the standard
substitution process for each field is performed. The following sample show a
panel after PREPARSE substitution.

#OPT PREPARSE=($,D) INWAIT=60
#FLD > COLOR=RED HLIGHT=REVERSE
#FLD ? COLOR=YELLOW
%-------------------- Network Monitor --------------------------
+Command %===>_COMMAND

+NETWORK STATUS AS AT &TIME ON &DATE3
+NCP1 is currently>INACT

+NCP2 is currently?ACT

Dynamically Alter Panel Designs (PREPARSE)

Chapter 7: Designing Interactive Panels (Panel Services) 141

Dynamic PREPARSE Option

In panel lines with more than one preparse character or field character, the
effect of substituting variable data within the line might cause the final text of
the line to be longer or shorter than the original text. In this case, fields that
follow the substituted data move to the left or right of their original column.

Shifting preparse or field characters to accommodate differing substituted data
lengths is the system default, and is called dynamic preparsing.

Static PREPARSE Option

If you want to display a panel where column alignment is important for the
presentation, but you are using preparse to substitute data into each line, you
could find the columns are not aligned properly in the final display. This occurs
because the substituted data varies in length from line to line.

To correct this, use the static preparse option. This lets you specify on the #OPT
statement that the location of preparse and field characters is to be preserved,
despite differing data substitution lengths. Here, data is truncated to fit if the
substituted data exceeds the space available to the left of the next preparse or
field character.

Example: PREPARSE Option

If a panel uses $ as its preparse character and contains the following line:

$VAR1 $VAR2

An NCL procedure sets the variable as follows:

&VAR1 = &STR !ABCDEFGHIJKLMNOPQRSTUVWXYZ

&VAR2 = &STR !12345

Dynamic preparse displays:

ABCDEFGHIJKLMNOPQRSTUVWXYZ 12345

Static preparse displays:

ABCDE 12345

Dynamically Alter Panel Designs (PREPARSE)

142 Network Control Language Programming Guide

Considerations When Using PREPARSE

Preparsing substitutes by using the specified character. After the preparse is
complete, standard panel field processing proceeds.

Take care that the data substituted does not contain unwanted field characters
which introduce unexpected fields if not removed. Preparsing may generate an
entire line of data that is expected to be output only.

If this data contains any underscore characters (indicating an input field) errors
will probably occur because the field format is incorrect. Overcome this by
ensuring that the data substituted by preparsing does not contain such
unwanted field characters. Varying the default field characters can help here.

Allowing the panel to perform substitution after preparse prevents this
problem. For example, change the NCL code as follows:

&IF &STATUS2 EQ INACT &THEN +

 &FIELD2 = &CONCAT > &STATUS2

Display Function Key Prompts

The SAA Common User Access (CUA) standards require that a list of function
keys and their functions be displayed at the bottom of a panel. The #TRAILER
control statement can be used by NCL procedures to nominate lines which
appear at the bottom of the panel. The function key prompts are then always
displayed at the bottom of the panel regardless of the screen size.

Control the Formatting of Input Fields

Chapter 7: Designing Interactive Panels (Panel Services) 143

Control the Formatting of Input Fields

When a panel is displayed, a data stream is created to format the physical
screen as defined in the panel definition. For example, a panel may be
displayed repeatedly as a monitor screen or similar, where the display time is
controlled by the INWAIT operand. In this example, the INWAIT timer can expire
while data or a command is still being entered in the panel. The entered data is
ignored and the input field cleared when the panel is refreshed. The cursor
position might also change.

You can use the #OPT FMTINPUT statement to avoid this problem by letting the
procedure determine when input fields are formatted. So, if you are entering
data when the screen is refreshed, and the FMTINPUT=NO specification is used,
the entered data remains and you can complete entry unaffected.

By varying the FMTINPUT operand setting (through a variable set from within
the procedure) from YES to NO, the procedure can toggle input field formatting
on and off. For example:

#OPT FMTINPUT=&FMT

The first time a panel is displayed, it should always specify FMTINPUT=YES to
ensure that the physical screen is correctly formatted. On subsequent refreshes
(usually after INWAIT expires), FMTINPUT=NO can be used.

For example:

.FMTYES

 &FMT = YES

 &GOTO .DISPLAY

.FMTNO

 &FMT = NO

.DISPLAY

 &PANEL MYPANEL

 &IF .&INKEY EQ . &GOTO .FMTNO

 .

 .

 . standard processing

 .

 .

 &GOTO .FMTYES

Note: The FMTINPUT operand is designed to work in conjunction with the
INWAIT facility and must be used with care, or panel errors can result.

Retrieve Panels from Panel Libraries

144 Network Control Language Programming Guide

Allow Long Field Names in Short Fields

Panel Services panel definition screens look similar to the panel which is to be
displayed. The panel definition screen contains attribute characters followed by
the field data (for TYPE=OUTPUT fields) or variable names (for TYPE=INPUT or
TYPE=OUTVAR fields). The next field attribute character is placed at the start
position of the next field. Unfortunately this means that input fields cannot be
any shorter than the variable name which is to contain the input data.

To overcome this, you can use the #ALIAS control statement to define a short
alias name for a variable. The alias name can be used where the variable would
have been used. You can define a range or list of variables and refer to them by
the same alias name in the panel definition.

Retrieve Panels from Panel Libraries

Panels are created using an online editor and are stored in a panel library. When
a user is defined, the panel library, or sequence of panel libraries that they are
to use, is defined. This is called the panel library path. When required, panel
specifications are retrieved from a library in the user's current path.

To eliminate overheads associated with retrieving the panel from the library, an
in-storage queue of active panels is maintained. When a panel is first
referenced, it is retrieved from a panel library and stored on the active panel
queue.

Thereafter, the panel is retrieved from the active panel queue without
reference to the panels library. If one of these panels is modified (using the
online editor), the old copy is removed from the active panel queue so that the
next reference retrieves the updated panel from the panel library path.

Note: If a panels library is being shared by more than one system, the old
version of a modified panel is only removed from the active panel queue of the
system on which the panel change has been made. The other systems continue
to use the old panel until it is rolled off the active panel queue by other panels
being used in the system. The LIBRARY REFRESH command can be used to drop
all panels loaded from a library from the active panel queue.

The SHOW PANELS command can be used to list the panels that are retained in
the active panel queue.

Display Panels on OCS Windows

Chapter 7: Designing Interactive Panels (Panel Services) 145

Display Panels on OCS Windows

Full-screen displays can be invoked from an OCS window. OCS windows
normally operate in roll mode from top to bottom of the window.

Any NCL process executing in the NCL processing environment associated with
an OCS window can issue &PANEL in an attempt to take over the window and
place it in full-screen mode.

OCS always grants this bid for the display area if it is operating in its usual rolling
mode. It places the window in full-screen mode and initiates queuing of any
messages that are directed to the OCS window while it is operating in full-screen
mode.

On completion of the NCL procedure that has taken over the window, or when
the procedure issues an &PANELEND statement, the OCS window reverts to
standard roll mode operation and any queued messages are displayed.

If the number of queued messages exceeds the size of the OCS window, the
window is automatically placed in AUTOHOLD mode to ensure you have time to
observe all messages.

NCL Processes Competing Against OCS for the OCS Window

If an NCL process executing in an OCS window's NCL processing environment
issues an &PANEL statement while the OCS window is in its usual roll mode, OCS
(the current owner of the window) always allows the panel to be displayed.

If an NCL process attempts to issue an &PANEL statement when the OCS
window is in Holding or Autohold On mode, the &PANEL statement is
suspended. The OCS window is placed into FS-HOLD mode and requires
operator input before the NCL process panel is allowed to take over the
window. At this stage, (Holding or Autohold) the OCS window is logically
considered to be in an &CONTROL NOSHAREW condition. That is, OCS owns the
presentation area and is not prepared to release it.

Operator input releases the Holding or Autohold mode; OCS immediately
switches to the logical &CONTROL SHAREW condition and allows the panel to be
displayed.

Display Panels on OCS Windows

146 Network Control Language Programming Guide

Competition Between NCL Processes for an NCL Environment Window

Many NCL processes can execute concurrently in an NCL processing
environment. If the NCL environment is associated with a window, any process
can issue &PANEL in an attempt to take over the window's presentation area to
show you their particular panels.

At all times there is a logical owner for the presentation area represented by the
window. For an OCS window this is OCS itself most of the time, but when an NCL
process issues &PANEL it acquires logical ownership of the window and OCS
operates in the background.

The same applies for other NCL processing environments. For example, the
Primary Menu is initially owned by the Primary menu NCL process. If that
process STARTs other NCL processes which then execute within the same NCL
processing environment, these other NCL processes can bid for the window to
display their own panels by issuing an &PANEL.

Once a process succeeds in becoming the (temporary) owner of a window, it
can indicate its willingness to give up its ownership through the &CONTROL
SHAREW option.

If the current owner of the window is executing with &CONTROL SHAREW in
effect, it will automatically give up its ownership to any other process that
issues &PANEL. The previous owner is then logically stacked behind the new
owner. When the new owner ends or issues &PANELEND the previous owner's
panel is redisplayed.

One of the most common usages of asynchronous NCL processes competing for
a window is in an OCS environment. A user can have several independent NCL
processes executing in the NCL processing environment associated with an OCS
window. These processes might monitor the status of various items in the
network and report to the operator when an error condition occurs, by issuing
an &PANEL statement to takeover the window.

Asynchronous Panels

Chapter 7: Designing Interactive Panels (Panel Services) 147

These processes are written to use &CONTROL NOSHAREW, preventing any
other process from stealing the window from them once they displayed their
panel. On acknowledgement of their panel by the operator the process issues
&PANELEND to release their ownership. The window then reverts to the next
waiting process or to OCS.

Note: If a panel is defined with INWAIT=0, indicating that the issuing procedure
regains control immediately the panel is displayed, the system guarantees to
display the panel before the issuing procedure is allowed to continue. This
might mean waiting for some other process to release control of the window.

Asynchronous Panels

NCL lets you write procedures that interact with a display area either
synchronously or asynchronously. If you operate in synchronous mode, when a
screen panel is issued the procedure is suspended until input is received from
the device or until a timeout (as specified by INWAIT) expires.

This mode of operation suits applications where direct interaction with an
operator is expected. The INWAIT function also allows interval-based dynamic
updating of screen displays.

Synchronous mode operation does not suit applications which require dynamic
updating of screen displays as events occur, or circumstances in which screen
displays might have to be updated without necessarily involving any operator
input.

To solve these requirements there is a mode of panel operation called
asynchronous operation.

Asynchronous Operation Concepts

Asynchronous panel operation lets you write an NCL procedure that can issue a
panel for display but then continue execution without being suspended to wait
for operator input or timeout expiry.

This means that you can develop procedures to drive dynamically updated
event panels to display new event information as it happens (rather than at
fixed intervals) while retaining the ability to interact with an operator. It also
lets you update operator information screens at any time without requiring
operator input to trigger resumption of processing.

Asynchronous Panels

148 Network Control Language Programming Guide

Invoke an Asynchronous &PANEL Operation

To issue a panel in asynchronous mode, code the TYPE=ASYNC operand on the
&PANEL statement. Your procedure is suspended until the nominated panel is
scheduled for display, and then control returns from the procedure to the
statement immediately following the &PANEL statement.

At this stage, the system variable &RETCODE is set to indicate the result of the
&PANEL statement.

The values in &RETCODE are equivalent to the return codes set if you specified
&CONTROL PANELRC.

&RETCODE can contain one of the following values:

0

The display operation has not been performed because the nominated
panel has already been displayed and input is now available from that
earlier display.

This happens if your procedure repeatedly updates a panel but, between
updates, the operator enters some input into a field on the panel and
causes an input operation by pressing Enter or a function key. The input
variables defined for the panel now contain the updated values as entered
by the operator.

4

As for &RETCODE = 0, except no input fields have been changed, so the
operator has only pressed Enter or a function key. Again, the display
operation does not take place.

12

The display operation has been scheduled. The panel is displayed either for
the first time or to update an earlier display of the same panel.

The meaning of &RETCODE = 12 is completely different from the same
return code if a synchronous &PANEL statement is issued.

Asynchronous Panels

Chapter 7: Designing Interactive Panels (Panel Services) 149

Waiting for Input

Long-running NCL procedures do not execute continuously. At some point in
their logic they go into a wait state, waiting for some event to occur that
triggers them to start processing again. A typical example of such an event is
input received from the operator.

With synchronous &PANEL operation, the &PANEL statement implies a
wait-for-input condition. With asynchronous &PANEL operation, the panel
statement itself does not wait for input from the terminal, so another
mechanism is needed which tells the procedure when input has been received.
The mechanism used is &INTREAD and the procedure's dependent request
queue (see page 46).

When an asynchronous panel is displayed and something happens on the
window (for example, the operator enters input to the panel), a special message
is delivered to the procedure's dependent request queue in the format:

N00101 NOTIFY: PANEL EVENT: event-type RESOURCE:panelname

where event-type describes the type of input activity that is being notified.

When the procedure reaches a point in its logic where it needs to wait for input
from the terminal, it issues an &INTREAD TYPE=REQ statement. This
automatically places it in a wait state until a request message arrives on its
dependent request queue.

When input is entered by the operator, the N00101 message is delivered to the
dependent request queue, satisfies the &INTREAD statement and the procedure
wakes up. By examining the contents of the N00101 message the procedure can
determine that it is a notification of a panel event occurring on the
asynchronous panel.

It is important to note that the message is only a notification that a panel event
has occurred. The action taken by the NCL procedure after reading the message
depends on the event. The possible events and associated actions are:

INPUT

Input has been received from the terminal. For the input to be made
available to the NCL procedure in the associated panel input variables, it is
necessary for the procedure to issue an &PANEL TYPE=ASYNC statement.

Asynchronous Panels

150 Network Control Language Programming Guide

CHANGE

The terminal window conditions have been changed. This could indicate
that a redefinition of the window dimensions has occurred (a SPLIT or SWAP
operation has taken place).

BCAST

A broadcast has been sent to the panel. For the broadcast to appear on the
asynchronous panel currently displayed, it is necessary for the procedure to
issue another &PANEL statement.

TAKEOVER

Another NCL process has attempted to take over the window. The NCL
process is only notified of this event if it is the window owner and
&CONTROL NOSHAREW is in effect. To allow another NCL process to acquire
ownership of the window, the NCL procedure can issue a &PANELEND or a
&CONTROL SHAREW statement.

If an INPUT, CHANGE, or BCAST event occurs, the NCL procedure very often
issues an &PANEL statement to obtain the input to the asynchronous panel. This
statement must specify the name of the panel being displayed when the
&INTREAD statement was issued. The &PANEL statement completes with the
appropriate &RETCODE return code value, as described previously. If an
&PANEL statement specifying another panel name is issued after the N00101
message is read, the input is no longer available.

Coordinate Other Processing with Input Notification

The fact that input from a panel can be notified not by completion of the
&PANEL statement but instead by the arrival of a trigger message on the
procedure's internal request queue means that a procedure has the ability to
wait for more than one source of input to act as a trigger for it to resume
processing.

For example, consider a procedure that has the role of maintaining a
dynamically updated screen display which has to be refreshed with new
information as soon as it arrives, but which can receive an input command from
the screen.

Such a procedure needs to be able to listen for new information that is to be
displayed as well as listening for input received from the screen display.

Asynchronous Panels

Chapter 7: Designing Interactive Panels (Panel Services) 151

By designing the procedure so that it receives all its input via &INTREAD
TYPE=ANY, it can receive new display messages from its dependent response
queue (for example from other procedures operating in its dependent
environment) and notification of screen input via its dependent request queue.

This concept therefore allows a procedure to have a single point in its logic at
which it can wait for multiple different forms of input, and so synchronize its
processing of different input streams.

Control Input Field Initialization

When displaying an asynchronous panel, it is possible to receive output directed
to the panel while input is being entered. This could result in partially updated
panel input fields being reset when the panel is redisplayed to reflect the
received output.

The FMTINPUT operand of the #OPT statement in a panel definition determines
if input fields are formatted when a panel is displayed. This operand can be used
to control input field re-initialization for both synchronous and asynchronous
panels.

In the case of asynchronous panels, if the FMTINPUT operand is not specified in
the panel definition, the input fields are reset only the first time the panel is
displayed or when the panel is redisplayed after the operator has signaled the
end of input (by pressing Enter or a defined Function key). This means that input
can be entered continuously by the operator while the panel output fields are
being rewritten as output is directed to the terminal. If the FMTINPUT operand
is specified in the panel definition, input field initialization is processed as
defined by the operands to #OPT statement.

Panel Control Statements

152 Network Control Language Programming Guide

Manage I/O Contention

Using the CDELAY operand of the &PANEL statement, it is possible to prevent
output to a terminal in input mode being delayed, irrespective of the value of
the SYSPARMS CDELAY operand. This is advisable in situations where output can
affect the structure of a panel being displayed.

For example, members might be asynchronously inserted into a selection list
while selections are being made by the operator. In this situation, the chosen
selection variable may be associated with a certain entry before the list is
updated and a associated with a different entry afterward. Specifying CDELAY=N
synchronizes the arrival of the output with its appearance on the panel.

For more information about the CDELAY concept, see the Reference Guide.

Panel Control Statements

Optional control statements can precede a panel to specify the particular
requirements for that panel. These are:

#ALIAS

Defines alternative field names

#ERR

Defines the action to be taken for an error condition

#FLD

Defines or modifies a field character's attributes

#NOTE

Provides installation documentation (this is ignored during processing)

#OPT

Defines optional operational requirements

#TRAILER

Defines trailing lines for the panel

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 153

Control statements included within panel definitions must precede the
displayable portion of the panel which is determined by the first line that is not
a control statement. Control statements must start in column 1 of the lines on
which they appear.

Note: You cannot include comments on the same line as a control statement
(except #NOTE).

#ALIAS Control Statement—Define Alternative Name for Input Variables

This control statement allows the panel definition to contain alternative names
for variable names in TYPE=INPUT and TYPE=OUTVAR fields.

This facility is useful if you want to have short fields with long variable names.
Each reference to name in the panel definition is regarded as a reference to the
next name from the list of VARS specified.

This control statement has the following format:

#ALIAS name

 { VARS=prefix*[RANGE=(start,end)] |

 VARS={ vname | (vname,vname, …,vname) } }

name

Specifies the alias name that appears in the panel definition. Whenever this
name occurs in a field declared as TYPE=INPUT or TYPE=OUTVAR on the
#FLD statement, Panel Services logically replaces it with the next available
name from the VARS list.

The name can be from one to eight characters in length. The first character
must be an alphabetic or national character. The remaining characters, if
any, must be alphanumeric or national characters.

The same name can be used on multiple #ALIAS statements. The variable
names are simply added to the end of the list of names to which the alias
name refers.

Panel Control Statements

154 Network Control Language Programming Guide

VARS=prefix* [RANGE=(start,end)] |

VARS=(vname,vname, ..., vname)

Specifies the list of names to replace the alias name in the panel definition.
Each time the alias name is encountered in the panel definition, it is
replaced by the next available name from this list. The formats of the
operands associated with VARS= are as follows:

■ VARS=prefix* denotes that the variable names used are prefix1, prefix2,
and so on. The RANGE= operand can be specified to indicate a starting
and ending suffix number. The default is RANGE=(1,64). The format
prefix* cannot be used with other variable names on the same #ALIAS
statement.

■ VARS=vname is the name of a variable, excluding the ampersand (&).

Examples: #ALIAS Control Statement

#ALIAS Z VARS=LONGNAME

#ALIAS Z123 VARS=(SATURDAY,SUNDAY)

#ALIAS AVAR VARS=LINE* RANGE=(10,20)

Notes:

■ Multiple #ALIAS statements can be used for the same alias name if
insufficient space is available on a single statement.

■ If an alias name appears in the panel definition after all the variable names
in the alias list have been used up, the alias name itself appears in the panel.

■ Symbolic variables can be included in the #ALIAS statement. Variable
substitution is performed before the statement is processed, using variables
available to the NCL procedure at the time the &PANEL statement is issued.

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 155

#ERR Control Statement—Define Action Taken During Error Processing

This control statement determines the processing required when a panel is
being redisplayed following an error condition.

An error condition can be detected either by Panel Services internal validation
or by the processing NCL procedure. If detected by internal validation (and
&CONTROL PANELRC is not in effect), Panel Services invokes error processing
automatically. If detected by the processing NCL procedure, error processing is
invoked in one of two ways:

■ By using the &ASSIGN OPT=SETERR verb

■ By nominating the name of the variable that identifies the invalid input field
on the ERRFLD operand of the #OPT statement

This is dynamically invoked by using a symbolic variable with the ERRFLD
operand and setting this variable to the name of the variable (minus the
ampersand) that identifies the field in error.

When #ERR processing is initiated, the cursor is positioned to the first field in
error. The panel is redisplayed, applying the attributes defined on the #ERR
statement to the fields in error. This technique provides the panel user with a
simple means of drawing the terminal operator's attention to the field in error.
This is particularly effective on color terminals where the color of any field in
error can be altered and reverts to normal when the error condition is rectified.

Normally only one #ERR statement is defined. However, if required to
accommodate the operands, multiple statements can be defined. They can be
defined in any order. However, as with #OPT, #FLD, and #NOTE statements, any
#ERR statement must precede the start of the panel, as determined by the first
line that is not a control statement.

This control statement has the following format:

#ERR [INTENS={ HIGH | LOW }]

 [{ COLOR | COLOUR }={ BLUE | RED | PINK | GREEN |

 TURQUOISE | YELLOW | WHITE | DEFAULT }]

 [{ HLIGHT | HLITE }={ USCORE | REVERSE | BLINK | NONE }]

 [ALARM={ YES | NO }]

Panel Control Statements

156 Network Control Language Programming Guide

INTENS={ HIGH | LOW }

Determines the intensity of the error field when displayed. The INTENS
operand is ignored for terminals with extended color and highlighting when
either the COLOR or HLIGHT operand is specified.

HIGH

Specifies that the field is displayed in double intensity.

LOW

Specifies that the field is displayed in low or standard intensity.

{ COLOR | COLOUR }={BLUE | RED | PINK | GREEN |
 TURQUOISE | YELLOW | WHITE| DEFAULT}

Determines the color of the field. The operand applies only to IBM terminals
with seven-color support and Fujitsu terminals with three- or seven-color
support.

If the terminal does not support extended color, the COLOR operand is
ignored. This feature enables COLOR to be specified on panels that are
displayed on both color and non-color terminals. COLOR can be used with
the HLIGHT operand.

For Fujitsu terminals that support extended color data streams, but support
only three colors, the following color relationships are used:

Specified Result (on Fujitsu three-color terminal)

GREEN GREEN

RED RED

PINK RED

BLUE GREEN

TURQUOISE GREEN

YELLOW WHITE

WHITE WHITE

DEFAULT GREEN

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 157

Fujitsu seven-color terminals are treated the same as IBM seven-color
terminals.

The DEFAULT keyword indicates that the color of the field is to be
determined from the INTENS operand. This feature is useful if you want to
set the color from an NCL procedure (that is, COLOR=&COLOR is specified
and the NCL procedure can set the &COLOR variable to DEFAULT).

{ HLIGHT | HLITE }={ USCORE | REVERSE | BLINK | NONE }

Applies only to terminals with extended highlighting support, and
determines the highlighting to be used for the field.

The HLIGHT operand is ignored if the terminal does not support extended
highlighting, so HLIGHT can be specified on panels that are displayed on
terminals that do not support extended highlighting. HLIGHT can be used
with the COLOR operand.

When NONE is specified, the HLIGHT operand is ignored and no extended
highlighting is performed for this field.

ALARM={ YES | NO }

Determines whether to ring the terminal alarm when the panel is displayed
with an error condition. This alarm works independently of the ALARM
operand on the #OPT control statement.

Examples: #ERR Control Statement

#ERR COLOR=RED HLIGHT=REVERSE ALARM=YES

#ERR COLOR=YELLOW HLIGHT=BLINK INTENS=HIGH

Notes:

■ Only those attributes defined on the #ERR statement are modified for the
field in error. All other attributes associated with the original field, such as
internal validation, remain intact.

■ Symbolic variables can be included in a #ERR statement. Variable
substitution is performed before processing the statement, by using
variables available to the NCL procedure at the time the &PANEL statement
is issued.

Panel Control Statements

158 Network Control Language Programming Guide

■ When &CONTROL PANELRC is in effect, internal validation does not
automatically reshow the panel with the error message, and so on. In this
case, the procedure regains control following the &PANEL statement with
the &RETCODE system variable set to 8 to indicate that an error has
occurred. The &SYSMSG variable contains the text of the error message that
describes the error and the &SYSFLD variable contains the name of the field
in error. This name is the name of the variable in an input field that would
receive the data entered into that field.

■ The &ASSIGN statement SETERR option provides a mechanism for assigning
#ERR field attributes to multiple (input field) variables before displaying a
panel. This feature lets you accept input from a number of different fields
on a panel, validate all the fields, and redisplay the panel with all incorrect
fields displayed with the #ERR attributes. The user sees all the errors at one
time, rather than field by field.

#FLD Control Statement—Define or Modify a Panel Definition Field Character

This control statement tailors the operational characteristics of a panel.

When a panel is defined, it is made up of a number of lines, which in turn are
made up of a number of fields. Each field commences with a field character,
which appears as a blank on the panel when displayed. Each field character
determines the attributes to associate with the field following the field
character itself. A field is delimited by the next field character or the end of the
panel line. Fields cannot wrap from one line to the next.

The first field on a line always starts in column 1. If no field character is defined
in the first position of the line, the attributes of the second of the three
standard field characters are forced. These attributes are usually a plus sign (+),
TYPE=OUTPUT, and INTENS=LOW. They replace any non-field character
incorrectly placed in this position.

Before parsing, the #FLD statement is scanned and variable substitution is
performed. This process makes it possible to tailor dynamically any of the
options or operands on the statement.

You can specify as many #FLD statements as required, and you can define them
in any order. However, as with #OPT, #ERR and #NOTE statements, all #FLD
statements must precede the start of the panel, as determined by the first line
that is not a control statement.

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 159

This control statement has the following format:

#FLD { c | X'xx' }

 [BLANKS={ TRAIL | NONE | ANY }]

 [CAPS={ YES | NO }]

 [{ COLOR | COLOUR }={ BLUE | RED | PINK | GREEN |

 TURQUOISE | YELLOW | WHITE | DEFAULT }]

 [CSET={ ALT | DEFAULT }]

 [EDIT={ ALPHA | ALPHANUM | DATEn | DSN | HEX |

 NAME | NAME* | NUM | REAL | SIGNNUM | TIMEn }]

 [{ HLIGHT | HLITE }={ USCORE | REVERSE | BLINK | NONE }]

 [INTENS={ HIGH | LOW | NON }]

 [JUST={ LEFT | RIGHT | ASIS | CENTER | CENTRE }]

 [MODE={ SBCS | MIXED }]

 [NCLKEYWD={ YES | NO }]

 [OUTLINE={ {L R T B} | BOX }]

 [PAD={ NULL | BLANK | char }]

 [PSKIP={ NO | PMENU }]

 [RANGE=(min,max)]

 [REQUIRED={ YES | NO }]

 [SKIP={ YES | NO }]

 [SUB={ YES | NO }]

 [TYPE={ OUTPUT | INPUT | OUTVAR | SPD | NULL }]

 [VALIGN={ NO | LEFT | RIGHT | CENTER | CENTRE }]

c | X'xx'

Specifies the field character that is used in the panel definition to identify
the start of the field.

c

Specifies a single character that is not alphanumeric. Any special
character (for example, an exclamation mark) can be used, except an
ampersand (&), which is reserved for use with variables.

Panel Control Statements

160 Network Control Language Programming Guide

X'xx'

Specifies the hexadecimal value of the field character. Use this notation
to specify any value in the range X'01' to X'3F'. Do not use values which
correspond to alphanumeric characters, or X'0E' (shift in) or X'0F'(shift
out).

Although the panel editor prevents you from entering non-displayable
hexadecimal attributes (X'01' to X'3F') in the body of the panel, you can
use the PREPARSE option to prime the field character value in the panel
before issuing the &PANEL statement.

The first #FLD statement to reference a particular field character defines
a new character. Subsequent statements referencing that same field
character modify or extend the attributes of the field character. Three
standard field characters (%, +, _, unless altered by the #OPT statement)
are provided. If a default field character (usually % + or _) is referenced,
it is the same as extending or modifying the attributes of an existing
field character.

If no additional operands are defined following a new field character, then
the following defaults apply:

TYPE=OUTPUT INTENS=LOW

No special attributes or internal validation apply.

BLANKS={ TRAIL | NONE | ANY }

For input fields, this operand determines the format the entered data must
take. By default, a field can contain embedded blanks (BLANKS=ANY).
Specification of this operand helps ensure that the entered data does not
contain embedded blanks, and contains only trailing blanks (TRAIL) or no
blanks at all (NONE). This operand works independently of the REQUIRED
operand. For optional fields, this operand can still be specified to help
ensure that any data entered is in the correct format. If &CONTROL
PANELRC is not in effect, BLANKS=TRAIL is specified, and the data is in error,
Panel Services redisplays the panel with the &SYSMSG variable set to:

INVALID IMBEDDED BLANKS

If BLANKS=NONE is specified and the data is in error, Panel Services
redisplays the panel with the &SYSMSG variable set to:

INCOMPLETE FIELD

If &CONTROL PANELRC is in effect, control is returned to the NCL procedure
for error handling instead of being handled totally by Panel Services. In this
case, &SYSFLD contains the name of the field in error and &SYSMSG the
error message text.

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 161

CAPS={ YES | NO }

(Input fields only) Determines whether to convert entered data to
uppercase before passing it to the NCL procedure in the nominated variable.
Conversion to uppercase is also performed for the data associated with an
input variable before displaying the panel. This does not affect the current
contents of the variable, unless the data is modified and entered by the
operator. Output fields are displayed exactly as defined and are not subject
to uppercase conversion.

Uppercasing data for CAPS=YES fields uses the language code of the user
region to select the character set that is used as the basis of the translation.
Where the language code of the user is not one of the supported values, the
language code of the system is used. Where the language code of the
system is not one of the supported values, a translation based on EBCDIC
codes is performed.

Note: Because data can be converted to uppercase before performing the
assignment, the effect of CAPS=NO can be negated if the variable that
receives the data is used in an assignment statement (for example, &A =
&DATA) within the processing NCL procedure. See the &CONTROL UCASE
option.

The CAPS operand is ignored when operating in a system executing with
SYSPARMS DBCS=YES.

{ COLOR | COLOUR }={ BLUE | RED | PINK | GREEN |
 TURQUOISE | YELLOW | WHITE | DEFAULT}

Applies only to IBM terminals with seven-color support and Fujitsu
terminals with three- or seven-color support, and determines the color of
the field.

If the terminal does not support extended color, the COLOR operand is
ignored. This feature enables COLOR to be specified on panels that are
displayed on both color and non-color terminals. COLOR can be used with
the HLIGHT operand.

Panel Control Statements

162 Network Control Language Programming Guide

For Fujitsu terminals that support extended color data streams where only
three colors are available, the following color relationships are used:

Specified Result (on Fujitsu three-color terminals)

GREEN GREEN

RED RED

PINK RED

BLUE GREEN

TURQUOISE GREEN

YELLOW WHITE

WHITE WHITE

DEFAULT GREEN

Fujitsu seven-color terminals are treated the same as IBM seven-color
terminals.

The DEFAULT keyword indicates that the color of the field is to be
determined from the INTENS operand. This feature is useful if you want to
set the color from an NCL procedure (that is, COLOR=&COLOR is specified
and the NCL procedure can set the &COLOR variable to DEFAULT).

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 163

CSET={ ALT | DEFAULT }

(Output fields only) Determines which terminal character set to use to
display the field. If you specify CSET=ALT (or ALTERNATE), you can draw
boxes using the following characters:

e is displayed as

s is displayed as ¾

D is displayed as

E is displayed a

M is displayed as

N is displayed as

F is displayed as

G is displayed as

O is displayed as rotated 90° counter-clockwise

P is displayed as rotated 180°

L is displayed as

Note: CSET=ALT supersedes CSET=ASM in version 3.1

EDIT={ ALPHA | ALPHANUM | DATEn | DSN | HEX | NAME |
 NAME* | NUM | REAL | SIGNNUM | TIMEn }

(Input field) Determines additional internal editing that Panel Services
perform. By default no editing is performed. Specification of this operand
helps ensure that the entered data conforms to the nominated type. If a
field is mandatory, then also specify REQ=YES.

ALPHA

Accepts A to Z only.

ALPHANUM

Accepts A to Z, 0 through 9, #, @, and $ only.

DATEn

Field must be a valid date. The DATEn keyword must correspond to one
of the &DATEn system variables, and the input field must contain date
in the format associated with that system variable. For example,
EDIT=DATE5 indicates that the input field must always contain a date in
the format corresponding to the &DATE5 system variable (MM/DD/YY).

Panel Control Statements

164 Network Control Language Programming Guide

DSN

Specifies a valid OS/VS format data set name. If necessary, a partitioned
data set (PDS) member name or Generation Data Group (GDG) number
can be specified in brackets as part of the name.

HEX

Accepts 0 through 9 and A to F only.

NAME

Commences with alpha (A to Z, #, @, or $) and followed by
alphanumerics (A to Z, 0 through 9, #, @, or $).

NAME*

Commences with alpha (A to Z, #, @, or $) and followed by
alphanumerics (A to Z, 0 through 9, #, @, or $), but can be terminated
with a single asterisk (*). This asterisk allows a value to be entered that
can be interpreted as a generic request by the receiving procedure.

NUM

Accepts 0 through 9 only.

REAL

Input in this field must conform to the syntax for integers, signed
numbers or real numbers, including scientific notation.

SIGNNUM

Field must be numeric but can have a leading sign (+ or -).

TIMEn

Specifies a valid time. The TIMEn keyword must correspond to one of
the &ZTIMEn system variables, and the input field must be in the format
associated with that system variable.

When invalid data is detected and &CONTROL PANELRC is not in effect,
Panel Services invokes standard error processing. Control is not
returned to the NCL procedure until the error is corrected.

■ For EDIT=NUM, the panel is redisplayed with the &SYSMSG variable
set to:

 FIELD NOT NUMERIC

■ For EDIT=REAL, the panel is redisplayed with the message:

 FIELD NOT REAL NUMBER

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 165

■ For EDIT=ALPHA, ALPHANUM, HEX, or NAME, the panel is
redisplayed with the &SYSMSG variable set to:

 INVALID VALUE

■ For EDIT=DATEn, the panel is redisplayed with the &SYSMSG
variable set to:

 INVALID DATE

■ For EDIT=DSN, the panel is redisplayed with the &SYSMSG variable
set to one of the following values:

 INVALID DATASET NAME

 INVALID MEMBER NAME

■ For EDIT=TIMEn, the panel is redisplayed with the &SYSMSG
variable set to:

 INVALID TIME

In all cases, the terminal alarm is rung and the cursor is positioned to
the field in error. If a #ERR statement has been included in the panel
definition, processing of the error condition is performed as defined on
that statement.

If &CONTROL PANELRC is in effect, control is returned to the NCL
procedure for error handling instead of being handled totally by Panel
Services. In this case, &SYSFLD contains the name of the field in error
and &SYSMSG the error message text.

Note: Use of the EDIT operand might also require the use of the BLANKS
operand to help ensure that entered data does not include embedded
blanks. Regardless, editing is performed only for the length of the data
entered and not for the length of the input field. If you want to enter
the entire field, specify the BLANKS=NONE operand.

{ HLIGHT | HLITE }={ USCORE | REVERSE | BLINK | NONE }

Applies only to terminals with extended highlighting support, and
determines the highlighting to be used for the field.

If the terminal does not support extended highlighting, the HLIGHT operand
is ignored. This feature enables HLIGHT to be specified on panels that are
displayed on terminals that do not support extended highlighting. HLIGHT
can be used with the COLOR operand.

You can use NONE as a no-impact value when the highlighting of a field is
being dynamically determined from the NCL procedure and set using
variable substitution of the #FLD statement. When NONE is specified, the
HLIGHT operand is ignored.

Panel Control Statements

166 Network Control Language Programming Guide

INTENS={ HIGH | LOW | NON }

Determines the intensity of the field when displayed.

HIGH

The field is displayed in double intensity. High intensity is typically
associated with input fields and other important data. Minimize its use
to maintain its effectiveness.

LOW

The field is displayed in low or standard intensity.

NON

The field is displayed in zero intensity, that is, any data within the field is
not visible to the operator.

This operand is typically used for input fields for entering sensitive data such
as passwords. Use of this attribute for output fields is meaningless. Color or
extended highlighting attributes are ignored when used with this attribute.

JUST={ LEFT | RIGHT | ASIS | CENTER | CENTRE }

For output fields, this operand determines the alignment of the data within
the field after trailing blanks have been stripped. Justification is applied at a
field level. Do not confuse with VALIGN that applies to the individual
variable only.

■ JUST=LEFT results in padding to the right

■ JUST=RIGHT results in padding to the left

■ JUST=ASIS is treated as JUST=LEFT for output fields

■ JUST=CENTER results in padding to both the left and the right.

For input fields, justification occurs both when the data is being displayed
and when the data is being processed on subsequent entry. When an input
field is formatted for display (the value currently assigned to the variable
defined in the input field is substituted in place of the variable's name):

■ The data is justified to the left and padded to the right for JUST=LEFT.

■ The data is justified to the right and padded to the left for JUST=RIGHT.

■ The data is aligned for JUST=CENTER as the data is aligned for
JUST=LEFT.

■ The data is positioned exactly as defined in the variable and padding to
the right is performed for JUST=ASIS.

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 167

On subsequent reentry, trailing blanks and pad characters are stripped,
unless the trailing pad character is a numeric, in which case it is not
stripped:

■ For JUST=RIGHT, leading blanks and pads are also stripped (including
numerics). Use of JUST=RIGHT for input fields can inconvenience
terminal operators because it is necessary to cursor across to the
commencement of the data in the field.

■ For JUST=ASIS, trailing blanks and pads are stripped, but leading blanks
and pads remain intact.

MODE={ SBCS | MIXED }

Applies to IBM terminals capable of supporting DBCS data streams. If a
panel is sent to such a device, input fields on the panel that use this #FLD
character allow the operator to enter DBCS characters if MODE=MIXED is
specified.

IBM DBCS terminals do not allow DBCS character entry in input fields that
specify MODE=SBCS (single-byte character stream).

This operand does not apply to Fujitsu terminals, which allow DBCS
character entry at any time.

NCLKEYWD={ YES | NO }

Specifies whether fields that use this FLD character accept input of words
that conflict with NCL keywords. The default is YES. If you attempt to enter
any NCL reserved keyword NO causes it to be rejected.

OUTLINE={ { L R T B } | BOX }

Specifies the extended highlighting outlining option required for this field.
Any combination of L (left), R (right), T (top), or B (bottom) can be coded.
The field is outlined at the top or bottom with a horizontal line and at the
left or right border with a vertical line, according to the options specified.
Alternatively, you can specify the BOX option, which is equivalent to
specifying LRTB. This option is terminal-dependent.

PAD={ NULL | BLANK | char }

Applies to INPUT, OUTPUT, and SPD fields.

For output fields, PAD works with both the JUST and VALIGN operands, one
of which must be specified for PAD to take effect. The operand determines
the pad or fill character to use when the field is displayed.

Panel Control Statements

168 Network Control Language Programming Guide

The variable substitution process substitutes the data currently assigned to
any variables within the field being processed. When substitution is
complete, any difference between the length of the field defined on the
panel and the length after substitution (after stripping trailing blanks) is
padded with the specified PAD character.

NULL

Helps ensure that the terminal operator can use keyboard insert mode
when entering data. Padding is performed either to the left or to the
right, as specified in the JUST operand.

char

Specifies a single character that is to be the pad character (for example,
PAD=-).

You can use any character, including the use of any of the field
characters defined on #FLD statements. Take care when using numeric
pad characters because their use affects the pad character stripping
process on subsequent entry.

Using PAD characters with input fields invokes special processing on
subsequent input to help ensure that unnecessary pad characters are
stripped before returning the entered data in the nominated variable.

PSKIP={ NO | PMENU }

(Input fields only) Determines if panel skip requests are accepted in this
field. A panel skip request is entered in an input field in the format =m.m,
where m.m is a menu selection. When this request is entered in an
appropriate field, a panel skip to the specified menu selection is performed.

NO

The input field is not scanned for panel skip requests.

PMENU

The input field is scanned for panel skip requests and action taken in
response.

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 169

RANGE=(min,max)

(Numeric field) Specifies the range of acceptable values. The range includes
all numbers, from the minimum number (min) to the maximum number
(max). Both min and max must be specified, and max must be equal to or
greater than min. Use of this operand forces EDIT=NUM. If the entered
number falls outside the acceptable range and &CONTROL PANELRC is not
in effect, Panel Services redisplays the panel, with the &SYSMSG variable set
to:

NOT WITHIN RANGE

If &CONTROL PANELRC is in effect, control is returned to the NCL procedure
for error handling instead of being handled totally by Panel Services. In this
case, &SYSFLD contains the name of the field in error and &SYSMSG the
error message text.

REQUIRED={ YES | NO }

Specifies whether a field is mandatory and the user must complete it. If
&CONTROL PANELRC is not in effect, Panel Services rejects any entry by the
user unless the mandatory field has been entered. If it is not entered, Panel
Services redisplays the panel with the &SYSMSG variable set to:

REQUIRED FIELD OMITTED

The terminal alarm is rung and the cursor is positioned to the omitted field.
If a #ERR statement has been included in the panel definition, processing of
the error condition is performed as defined by the #ERR statement. Failure
to include the &SYSMSG variable on the panel suppresses this error
message. This operand can be abbreviated to REQ=.

If &CONTROL PANELRC is in effect, control is returned to the NCL procedure
for error handling instead of being handled totally by Panel Services. In this
case, &SYSFLD contains the name of the field in error and &SYSMSG
contains the error message text.

SKIP={ YES | NO }

(Output field only) Determines whether to assign the skip attribute to the
field. If the preceding input field is entered in full and the intervening output
field is specified with the SKIP operand, this option causes the cursor to skip
to the next input field.

This operand is NO by default, because field skipping can unexpectedly
place the cursor in the wrong screen window when operating in split screen
mode.

Panel Control Statements

170 Network Control Language Programming Guide

SUB={ YES | NO }

(Output field only) Determines whether to perform variable substitution.
This operand is typically used only for fields where data contains the &
character. Substitution results in the current value of that variable being
substituted or, if no value is assigned, the variable being eliminated. This
operand is ignored for both INPUT and SPD fields.

TYPE={ OUTPUT | INPUT | OUTVAR | SPD | NULL }

Determines whether to process the field as an output-only field (OUTPUT
and OUTVAR), input field (INPUT), Selector Pen Detectable (SPD) field, or
pseudo input field (NULL).

OUTPUT

A protected field is created, which does not allow keyboard entry. This
field can contain a mixture of fixed data and variables. Each variable
must commence with an ampersand (&). Substitution of variables is
performed using the variables available to the invoking NCL procedure
at the time the &PANEL statement is issued. Global variables can be
referenced in an output field. Alignment and padding are performed
according to the rules defined for the field.

INPUT

An unprotected field is created, which allows keyboard entry. This field
must contain a single variable name (without the ampersand). This
single variable must immediately follow the field character. System
variables and global variables cannot be used in an input field.
Subsequent data entered into this field is made available to the invoking
NCL procedure in this variable on return from the &PANEL statement.
Specification of multiple variables or a mixture of variables and fixed
data in an input field results in an error.

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 171

OUTVAR

Is the same as TYPE=OUTPUT, except that Panel Services inserts an &
between the field attribute and the next character. This feature means
that you can follow a TYPE=OUTVAR field character with a variable
name without the ampersand. This facility makes it easy to create fields
which switch between input and output under NCL control. For
example, a panel contains the statements:

#FLD $ TYPE=&INOUT

+ Record Key$RKEY +

An NCL procedure would then set the variable &INOUT to control
whether the data in the variable &RKEY is output only or an operator
can modify it:

&INOUT = OUTVAR -* the value is output only.

&INOUT = INPUT -* the Operator can modify the

 -* field.

A similar effect can be achieved using &ASSIGN OPT=SETOUT.

SPD

A protected field is created in selector pen detectable format. This value
enables the terminal operator to select the field using either a LIGHT
PEN or the CURSOR SELECT key. The SPD field characters must be
immediately followed by one of the three designator characters (?, &,
or a blank), which can in turn optionally be followed by one or more
blanks. A single variable with no other fixed data must also be defined
within the field. This single variable must be defined without the
ampersand (&) and cannot be a system or global variable. If selected by
the user, the variable nominated in the SPD field is set to the value
SELECTED on return to the NCL procedure. If not selected, the variable is
set to a null value.

NULL

An unprotected field is created, which allows keyboard entry. However,
the name of an input variable to receive data entered in the field is not
required because any data entered by the terminal operator in a
TYPE=NULL field is ignored. Display data in this field can be in any
format. The NULL option accommodates four-color terminals where the
field attribute byte is used to determine the color in which the field is
displayed. (Seven-color terminals use an extended data stream to set
the color). The NULL option indicates that Panel Services is to use an
unprotected field attribute with the INTENS operand value to determine
the color of the field.

Panel Control Statements

172 Network Control Language Programming Guide

VALIGN={ NO | LEFT | RIGHT | CENTER | CENTRE }

(Output fields only) Determines the alignment of data for an individual
variable only. Do not confuse with the JUST operand, which applies to field
alignment after all variable substitution has been completed. The VALIGN
operand is designed to facilitate tabular output without the need to specify
many individual field characters on the panel. If specified for an input field,
the operand is ignored.

The substitution process normally substitutes the data assigned to a
variable in place of the variable name. No additional blanks are created or
removed during this process. Thus, if the data being substituted is shorter
than the name of the variable (for example, variable &OUTPUTDATA set to
5678), then data following the variable name is shifted left to occupy the
area remaining after the removal of the variable name. This shift would
destroy any tabular alignment where the length of the data for each
variable differed. If the data being substituted is shorter than the variable
name, the VALIGN option helps ensure that the data to the right of the
variable is not shifted to the left. The length of the variable name (including
the ampersand) is the important factor and determines the number of
character positions to preserve during the substitution process.

However, data is not truncated and, if the data being substituted is longer
than the variable name, then the data to the right is moved to
accommodate all the substituted data. VALIGN works with the pad
character specified on the PAD operand. The pad character is used to fill any
difference between the data being substituted and the length of the
variable name being replaced.

VALIGN=NO

No alignment or padding is performed.

VALIGN=LEFT

Data is aligned to the left and padded to the right. An abbreviation of L
is acceptable.

VALIGN=RIGHT

Data is aligned to the right and padded to the left. An abbreviation of R
is acceptable.

VALIGN=CENTER

Data is centered (or one position to the left for an odd number of
characters) and padded both to the left and to the right. An
abbreviation of C is acceptable.

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 173

Examples: #FLD Control Statement

#FLD # TYPE=INPUT REQ=YES EDIT=NUM COLOR=RED RANGE=(1,3)

#FLD # BLANKS=TRAIL PAD=_

#FLD # TYPE=OUTPUT COLOR=&COLOR HLIGHT=&HLIGHT

#FLD (TYPE=INPUT INTENS=HIGH EDIT=DATE4

#FLD @ HLIGHT=BLINK

#FLD / TYPE=SPD

#FLD % JUST=R PAD=- -* supplementing default output char

#FLD _ JUST=ASIS -* supplementing default input char

#FLD + VALIGN=RIGHT JUST=CENTER -* null pad assumed

Notes:

■ If insufficient space is available on a single statement, multiple #FLD
statements can be used for the same field character.

■ Symbolic variables can be included in a #FLD statement. Variable
substitution is performed before the statement is processed, using variables
available to the NCL procedure at the time the &PANEL statement is issued.

■ You can alter the default field characters by using the DEFAULT operand of
the #OPT control statement.

■ You can use the #ERR control statement to simplify redisplaying a panel to
indicate a field in error.

■ The &CONTROL PANELRC operand can be used to specify that the NCL
procedure receives control for further processing when internal validation
detects an error in data entered by the operator. When this technique is
used, the procedure can determine the field in error (from the &SYSFLD
variable) and the error message to issue (from the &SYSMSG variable). With
this information, it can alter its processing accordingly, including altering the
text of the error message in the &SYSMSG variable if necessary.

Panel Control Statements

174 Network Control Language Programming Guide

#NOTE Control Statement—Allow User Comments in a Panel Definition

This control statement provides a means of placing documentation within a
panel definition. The #NOTE statement is not processed and is ignored. Multiple
#NOTE statements can be specified. However, as with the #FLD, #ERR, and #OPT
statements, all #NOTE statements must precede the start of the panel. The start
of a panel is determined by the first line that is not a control statement or
#NOTE statement.

This control statement has the following format:

#NOTE any_text

any_text

Specifies any free-form user text.

Examples: #NOTE Control Statement

#NOTE This panel is used by the Network Error Log System

#NOTE INWAIT=60 CURSOR=&CURSORFLD

As shown in the example, the #NOTE statement can provide a simple means of
temporarily nullifying another control statement, allowing for easy
reinstatement when required.

#OPT Control Statement—Define Panel Processing Options

This control statement tailors the processing options for a panel.

Before parsing, the #OPT statement is scanned and any variables are
substituted. This process makes it possible to tailor dynamically any of the
operands on the statement.

Multiple #OPT statements can be specified. However, as with #FLD, #ERR, and
#NOTE statements, all #OPT statements must precede the start of the panel, as
determined by the first line that is not a control statement.

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 175

This control statement has the following format:

#OPT [ALARM={ YES | NO }]

 [BCAST={ YES | NO }]

 [CURSOR={ varname | row,column }]

 [DEFAULT={ hlu | X'xxxxxx' }]

 [ERRFLD=varname]

 [FMTINPUT={ YES | NO }]

 [IPANULL={ YES | NO }]

 [INWAIT=ss.th]

 [LSM={ YES | NO }]

 [PREPARSE={ (c,S) | (c,D) }]

 [UNLOCK={ YES | NO }]

 [MAXWIDTH={ YES | NO }]

ALARM={ YES | NO }

Determines whether to ring the terminal alarm when the panel is displayed.
Dynamic control of the alarm can be achieved by changing the value of the
ALARM operand using a variable set before issuing the &PANEL statement.

If internal validation has detected an error and the panel is being
redisplayed to indicate the error, this operand is ignored and the terminal
alarm rung. The #ERR statement can be used to alter the processing
performed when an error condition is detected.

BCAST={ YES | NO }

Specifies whether to redisplay the panel automatically when a broadcast is
scheduled. By default, the only panels that are redisplayed automatically
are those panels that contain one or more of the special broadcast
variables, &BROLINEn. If BCAST=YES is coded, a broadcast redisplays the
panel even if it does not contain any of the &BROLINEn variables.

Panel Control Statements

176 Network Control Language Programming Guide

CURSOR={ varname | row,column }

Specifies the name of a variable in either an INPUT or an SPD field where
the cursor is to position. Alternatively, the precise coordinates for the cursor
can be defined (see page 138) as row,column.

The value of varname is the variable name without the ampersand, as used
in the INPUT or SPD field (for example, CURSOR=FIELD5).

Where coordinates are specified, row must be specified in the range 1
through 62 and column in the range 1 through 80. The row and column
values are always relative to the start of the current window and therefore
remain unchanged when operating in split screen mode. The &CURSROW
and &CURSCOL system variables can be used to determine the location of
the cursor on input to the system.

Dynamic positioning of the cursor can be achieved by using a variable or
variables (including the ampersand) in place of varname or row,column. The
invoking NCL procedure can set the variables to the name of the field to
contain the cursor or the coordinates before issuing the &PANEL statement.

If internal validation has detected an error and the panel is being
redisplayed to indicate the error, the CURSOR operand is ignored and the
cursor is positioned to the field in error.

Specifying varname with a name other than the name of a variable used in
an INPUT or SPD field results in an error. If coordinates are used and they lie
outside the dimensions of the window currently displayed, the cursor is
positioned in the upper left corner of the window.

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 177

DEFAULT={ hlu | X'xxxxxx' }

Alters the three standard default field characters. If the #OPT statement is
omitted or the DEFAULT operand not used, then three standard field
characters are provided for use when defining the panel. They are:

% = protected, high-intensity

+ = protected, low-intensity

_ = unprotected, high-intensity

It is sometimes necessary to select alternative field characters, for example,
if the underscore character is required within the body of the panel for
some reason.

The DEFAULT=hlu operand must always specify three characters. The
characters chosen must not be alphanumeric, that is, any special character
except ampersand (&), which is reserved for variables. They must not
duplicate another field character, except one already defined as a default.
The order of the characters is significant, as the attributes of the standard
default characters apply in the order described.

Therefore specification of DEFAULT=*+/ results in:

* = protected, high-intensity

+ = protected, low-intensity

/ = unprotected, high-intensity

You can also specify the default field characters in hexadecimal in the
format:

DEFAULT=X'xxxxxx'

Each xx pair represents a hexadecimal number in the range X'00' to X'FF'. All
numbers except X'00” (null), X'40' (blank), and X'50' (ampersand), are valid.
This format even allows alphanumeric characters to be used as field
characters. For example, if you specify X'C1', any occurrence of the letter A
in the panel definition is treated as the default character. However, we
recommend using hexadecimal values that do not correspond to
alphanumeric characters.

For example, specification of DEFAULT='010203' would result in:

X'01' = protected, high-intensity

X'02' = protected, low-intensity

X'03' = unprotected, high-intensity

Panel Control Statements

178 Network Control Language Programming Guide

ERRFLD=varname

Specifies the name of a variable in an INPUT field that is in error and for
which to invoke error processing, as defined on a #ERR statement. Use of
this operand without including a #ERR statement within the panel definition
results in an error. The ERRFLD operand provides a simple way of informing
Panel Services that the field identified by varname is in error. Panel Services
displays the panel using the options defined on the #ERR statement. The
#ERR statement could indicate to display the error field in reverse video,
colored red and the terminal alarm rung. The assignment of error text into a
variable appearing on the screen to identify the nature of the error typically
accompanies the use of the ERRFLD operand.

This operand is typically specified with the name of a variable (including the
&) that is set to null unless an error occurs. On error, the NCL procedure
sets the variable to the name of the field in error before issuing the &PANEL
statement to display the panel.

ERRFLD provides the panel designer with a simple means of changing the
attributes of a field (such as color and highlighting) without needing to
resort to dynamic substitution of #FLD statements.

Consider the case where an input field &INPUT1 is found to be in error and
the #OPT statement has been defined with ERRFLD=&INERROR. The NCL
procedure simply assigns the name of the variable used to identify the input
field, in this case INPUT1 (minus the &), into &INERROR and then redisplays
the panel.

&INERROR = INPUT1

&SYSMSG = &STR THIS FIELD IS WRONG

&PANEL MYPANEL

In this example, the text that identifies the nature of the error has been
assigned into the variable &SYSMSG which would be defined somewhere on
the panel.

&ASSIGN OPT=SETERR is effective only if &CONTROL FLDCTL is in effect.

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 179

FMTINPUT={ YES | NO }

Determines whether input fields are to be formatted when a panel is
displayed. This specialized option is designed to be used with INWAIT. When
processing with INWAIT, the time interval could expire at the instant when
the operator enters data. If the same panel is redisplayed to update the
screen contents, the data entered by the operator is lost as the new panel is
written. FMTINPUT can be used to bypass formatting of input fields and
hence when the panel is redisplayed only output fields are written. The
value of this operand is typically assigned to a variable from within the NCL
procedure, and changed between YES and NO as required (#OPT FMTINPUT
=&YESNO). Take care when using this facility because incorrect use of
FMTINPUT=NO can result in validation errors. Ideally, a panel is displayed
initially with FMTINPUT=YES and only when the INWAIT timer expires would
it be redisplayed with FMTINPUT=NO.

IPANULL={ YES | NO }

Specifies whether to set all variables associated with the panel input fields
to null when the panel is displayed with the INWAIT option, and the time
specified on the INWAIT expires so that control is returned to the procedure
without any panel input or a PA key causes the input.

If you do not want to erase input field variables if INWAIT completes or a PA
key is pressed, specify IPANULL=NO.

Default: YES

INWAIT=ss.th

Specifies the time in seconds and parts of seconds that Panel Services is to
wait for input from the terminal before returning control to the NCL
procedure following the &PANEL statement. By default, the system, having
displayed a panel, waits indefinitely for input. This indefinite wait is not
always desirable, as is the case where a terminal is performing a monitoring
function where input can be infrequent or never occur. If INWAIT is utilized
and the specified time elapses, control is returned to the NCL procedure
with all input or SPD variables set to null. If input is made during the time
interval, the time period is canceled and standard processing proceeds.

The maximum value that can be specified for INWAIT is 86400.00 seconds
(24 hours).

Specification of part seconds is possible. For example:

INWAIT=.5

INWAIT=20.5

INWAIT=.75

Panel Control Statements

180 Network Control Language Programming Guide

Any redisplay of a panel (for example, by use of the clear key) causes the
time interval to be reset. If the time interval expires before input is
received, specification of internal validation options (such as
REQUIRED=YES) is ignored.

Specification of INWAIT=0 or INWAIT=0.00 indicates to accept no input, and
control is returned to the NCL procedure immediately after the panel has
been displayed. In this case, subsequent action taken by the procedure
determines the period that the panel remains displayed.

The invoking NCL procedure can determine, by testing the &INKEY system
variable, whether the INWAIT time elapsed or data was entered. &INKEY is
typically set to the character value of the key pressed by the operator to
enter the data (for example, Enter or F1). If the INWAIT time interval
elapsed and no entry was made, the &INKEY variable is set to null. If
processing with &CONTROL PANELRC in effect, &RETCODE is set to 12 to
indicate that the INWAIT timer has expired.

INWAIT is ignored for asynchronous panels.

Default: Wait indefinitely for input.

LSM={ YES | NO }

If you do not want the LSM to control a particular panel, then code #OPT
LSM=NO in the panel definition. The entire panel is then written to the
terminal each time. If large numbers (thousands) of EASINET terminals are
being supported, the reduction in storage can become significant.

PREPARSE={ (c,S) | (c,D) }

Preparsing provides a means for dynamically modifying the location of field
characters in a panel. Normally, the position of field characters (as defined
by the #FLD control statement) is determined when Panel Services creates
the panel and remains fixed until the panel is modified.

Although you can modify the attributes of each field character (such as the
color of the field) by using variables in the #FLD statement, you are limited
in the number of variations.

The PREPARSE operand requests that Panel Services performs a preliminary
substitution scan of each panel line before processing the line for field
characters. The PREPARSE operand specifies a substitution character (c) that
is used to determine where substitution takes place. This character is
processed in the same manner as an ampersand (&) is processed during
standard substitution.

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 181

The ability to specify a character other than an ampersand means that
preparsing does not affect standard substitution when it is performed
following preparsing. You can use preparsing for the following purposes:

■ Alter a field character that appears in a particular position to allocate a
new set of attributes to the field.

■ Create entire new fields (or complete lines) that in themselves contain
the required field characters.

(c,S)

Indicates that the character c is used as the preparse character for the
panel, but that the Static Preparse Option applies during preparse
processing. This option prevents the movement of preparse or field
characters during the substitution process. This option is useful when
panels are being dynamically modified to hold data that can vary in
length but displays in columns. Substituted data can be truncated if it is
too long to fit into its target field without overwriting the next
occurrence of a preparse or field character on the same line.

(c,D)

Indicates that the character c is used as the preparse character for the
panel, but that the Dynamic Preparse Option applies during preparse
processing. The dynamic option allows the movement of preparse or
field characters to the left or right of their original position to
accommodate differing lengths of data being substituted into the panel.

UNLOCK={ YES | NO }

Determines whether the terminal keyboard is unlocked when the panel is
displayed. Specification of UNLOCK=NO prevents entry of data by the
terminal operator. NO is typically used with the INWAIT operand where a
panel is being displayed for a short period before progressing to some other
function.

MAXWIDTH={ YES | NO }

When MAXWIDTH=NO is specified or defaulted, the panel display is limited
to the standard 80-column width. If you are designing a panel for a wider
screen (for example, a model 5 terminal), specify MAXWIDTH=YES to allow
the full width of the screen to be used.

Panel Control Statements

182 Network Control Language Programming Guide

Examples: #OPT Control Statement

#OPT DEFAULT=#$%

#OPT INWAIT=60 CURSOR=&CURSORFLD

#OPT CURSOR=IN1 ALARM=YES

#OPT ALARM=&ALARM PREPARSE=($,D)

#OPT ERRFLD=&INERROR

#OPT INWAIT=.5 UNLOCK=NO PREPARSE=($,S)

#OPT CURSOR=5,75

#OPT CURSOR=&ROW,&COLUMN FMTINPUT=&FMT

Notes:

■ Multiple #OPT statements can be used if necessary.

■ Symbolic variables can be included in a #OPT statement. Variable
substitution is then performed before the statement is processed.

■ A panel is redisplayed automatically following use of the CLEAR key. Control
is not returned to the invoking NCL procedure.

■ The attributes of the standard default characters can be modified using a
#FLD statement that adds additional attributes (such as color) or alters
existing attributes.

#TRAILER Control Statement—Place Lines at Screen End

This control statement positions function key prompts at the bottom of the
screen.

Indicate the start of the trailer lines with a #TRAILER START statement. Then
enter the lines to appear at the end of the screen, followed by a #TRAILER END
statement.

This control statement has the following format:

#TRAILER [START | END]

 [POSITION={ YES | NO }]

START

Specifies the start of the lines in the trailer. Each line following this line until
a #TRAILER END statement or another control statement such as #FLD is
placed in the trailer.

Panel Control Statements

Chapter 7: Designing Interactive Panels (Panel Services) 183

END

Specifies that the end of the lines in the trailer. There must have been a
#TRAILER START statement earlier in the panel definition.

No other operands can be specified on a #TRAILER END statement.

POSITION={ YES | NO }

Specifies whether to display the trailer lines.

YES

The trailer lines are displayed on the final lines of the physical screen.

NO

This value can be used to suppress the display of the trailer lines, even
though they remain in the panel definition.

Examples: #TRAILER Control Statement

#TRAILER START

%This appears on the last line of the panel

#TRAILER END

Notes:

■ The #TRAILER statements must appear before the first panel line in the
definition. If you want to preparse the lines, you place the #TRAILER
statements after the #OPT PREPARSE= statement.

■ The field attribute characters which you use in the trailer lines can be
defined before or after the trailer lines in the panel.

■ The trailer lines cover any panel lines that would otherwise have been
displayed.

■ The trailer lines are positioned so that they end at the bottom of the
physical screen if the window starts at the top of the screen.

Chapter 8: NCL File Processing 185

Chapter 8: NCL File Processing

This section contains the following topics:

UDB File Formats (see page 185)
Work with UDBs (see page 188)
Work with Files (see page 206)
Work with Data (see page 211)

UDB File Formats

The term UDB refers to any file processed with the NCL file processing
statements. Three types of physical file come under this heading:

■ Mapped format files

■ Unmapped format files

■ Delimited format (or UDB format) files

Mapped Format Files

Mapped format processing can be used on any file which is arranged in a
manner that is describable to Mapping Services using a map. A map is used to
describe a file in terms of structures or components understood by Mapping
Services.

Mapped format file access is the preferred method of file processing in NCL. The
advantages of mapped format processing are:

■ Allows for transparent data to be placed in the file

■ Allows for upward compatibility

■ Combined with Mapping Services, allows NCL to operate at a logical level,
even when dealing with complex data formats

UDB File Formats

186 Network Control Language Programming Guide

Default Map

A default mapping, using the $NCL map can be used to maintain NCL variable
data in a file. Individual data records up to 32K and containing transparent
variable data, are supported in this manner. Each variable exists in a vector
format and can be isolated using length fields and data tags.

When using the $NCL map, the file statements reference one or more NCL
variables in the normal manner. The actual structure of the record can be
understood by referring to the distributed $NCL map.

Other Maps

When a retrieval is being carried out from a file using a mapped format, the
contents of the file records are read into a mapped data object (MDO). A map is
attached to the MDO to provide NCL with a means of interpreting its contents.
The &ASSIGN verb can then be used to reference certain sections of the data by
name and extract these from the MDO into NCL tokens (variables). Mapping
Services does the work of locating the sections of data which are being
extracted by using the map. By doing the work of locating components within
the data, Mapping Services can save a considerable number of NCL statements,
particularly for files that have a complicated format, and also for files that
contain non-printable data.

Because the map definition is a separate entity within your product, it is also
possible that subsequent changes to the file format will only require changes to
be made to the map definition, and not to the NCL code itself.

Mapping Services can be used to define maps capable of interpreting most data
formats.

Unmapped Format Files

NCL can also be used to process records from VSAM files for which no map is
available.

Unmapped mode processing is generally used in applications where UDBs
created or used by NCL procedures are to be processed offline by other
systems.

UDB File Formats

Chapter 8: NCL File Processing 187

NCL file processing statements allow the NCL user to indicate that a particular
UDB is to be processed in unmapped mode, causing NCL to bypass any attempt
to identify individual fields within records read from or written to the file.

While still allowing all the simplicity of access to the file, unmapped mode
processing means the NCL user must know the structure of records on the file.
Consequently more attention must be paid to this aspect of file processing than
is the case for the simpler delimited format files.

Print (Using Unmapped Format File Support)

Unmapped format is for processing data of any format including binary or
non-printable data. It is also useful for report generation where the data is to be
directed to a system printer. On a z/OS system, the unmapped format is ideal
for generating reports that are to be routed to JES SYSOUT for printing either on
local or remote printers. The NCL provides operands that help control report
formatting.

For more information about the &FILE ADD statement, see the Network Control
Language Reference Guide.

If required, a mapped format or delimited format file can be processed in
unmapped mode.

The processing mode (UDB format, mapped, or unmapped) for any file can be
swapped at any time during NCL procedure processing and this might become
necessary if special key structures are being used.

Work with UDBs

188 Network Control Language Programming Guide

Delimited Format Files

Data in UDB format files is stored in records that contain any number of fields to
a maximum total record size of 32K, which is the maximum statement size that
can be processed by NCL. Each field is isolated from the next by a high-value
(X'FF') field separator and the last field in a record is followed by a field
separator. The length of a field is determined by the length of data supplied by
the NCL user. The occurrence of two consecutive field separators indicates the
presence of a null field that contained no data when the record was created,
even though the field concerned is logically part of the record. The total length
of any record includes the key and all field separators.

The rules for field separators within UDB format files are:

■ A field separator follows each field

■ No field separator follows the key

■ A trailing field separator follows the last field, unless it is a key-only file with
no data other than the key

■ Two consecutive field separators indicate a field of 0 length (a null field)

Multiple File and Alternate Index Support

NCL supports the concurrent processing of multiple files (including a mixture of
delimited format, mapped format, and unmapped format files) in addition to
the use of VSAM alternate indexes that allow records to be retrieved using keys
based on different parts of the data. For example, a UDB used to maintain Help
Desk problem information might contain a sequentially allocated problem
number, in addition to the name of the resource to which the problem was
related. Using alternate indexes, it is possible to retrieve records in both
problem number order and resource name order.

Work with UDBs

UDB support is a standard function of NCL. NetMaster Databases (NDBs)
provide more advanced facilities for users with requirements for more complex,
high-performance data management within their NCL procedures.

NCL supports the following techniques for VSAM user database (UDB) files:

■ Processing by specific key (KSDS)

■ Processing by partial or generic key (KSDS)

Work with UDBs

Chapter 8: NCL File Processing 189

■ Sequential processing (KSDS), in ascending or descending key order

■ Retrieval for update or deletion (KSDS)

■ Deletion by specific key (KSDS)

■ Multiple record deletion by generic key (KSDS)

■ Sequential processing, forwards or backwards (ESDS)

■ Emptying (resetting) of data sets (KSDS)

■ Processing of SYSOUT data sets (z/OS only)

NCL uses the VSAM access method for its speed and flexibility. The high-level
NCL implementation shields the user from all VSAM complexities.

UDBs are keyed VSAM data sets (KSDS) or sequential VSAM data sets (ESDS). For
keyed data sets, any key length from 1 to 255 characters can be selected.
Standard VSAM restrictions regarding duplicate keys apply.

Allocate UDBs

You can allocate UDBs dynamically by using the ALLOCATE command.

Note: For more information about the ALLOCATE command, see the online help.

The UDBs allocated in this manner must be identified to your product as UDBs
through use of the UDBCTL command as follows:

UDBCTL OPEN=ddname ID=file_id options

ddname

Specifies the data definition (DD) name of the DD card defining the UDB.

file-id

Specifies a logical file ID. You can specify ID=* to use the same value for
both ddname and file_id.

options

Specifies any special processing attributes to apply to this UDB.

Dynamically allocated UDBs can be deallocated (using the DEALLOCATE
command) after the UDBCTL command has been used to close them.

Work with UDBs

190 Network Control Language Programming Guide

Prepare to Use a UDB

The process to create and use a UDB is:

■ Determine the format of the data set, the length of the records it is to
contain and the size of the key to be used. If records are to be added or
updated on-line, the key must commence in the first position of the record
(unless the data set is to be processed in unmapped mode). The amount of
space required should also be determined at this stage. Remember to take
the presence of field separators into account when deciding on record
length. Normally field separators have little effect on overall record length,
but they can become significant when a record contains numerous very
short fields.

■ Use the IDCAMS VSAM utility to define the data set. The DEFVSAM member
in the distribution library contains an example of defining a VSAM data set.

■ Allocate the file dynamically with the ALLOCATE command.

■ Use the UDBCTL command to open the UDB and assign a logical file ID, and
any special processing attributes that might be required. This makes the file
available for processing.

■ Include the appropriate &FILE OPEN statement in the NCL procedure.

After these steps have been performed, the file is available for processing using
standard NCL statements.

UDB Initialization

Your product attempts to open UDBs when a UDBCTL OPEN command is
processed. If the open fails, the system internally uses IDCAMS to verify the data
set and then retry the open. Therefore it is not necessary to include verification
steps in the system JCL.

Initialization of KSDS UDBs

If the data set requires an initial load, the system loads a single record with a
key of all X'00' and then deletes it. If this load fails, the data set is closed and is
classified as unusable, and is blocked from further processing until the problem
has been rectified. Use the SHOW UDB command to determine the cause of the
error.

Work with UDBs

Chapter 8: NCL File Processing 191

Initialization of ESDS UDBs

Empty ESDSs identified as UDBs are initialized by loading a single record which
has the format:

N28510 VSAM INITIAL LOAD PERFORMED AT hh.mm.ss ON day-dd.mon-year

This record is always the first record of an ESDS UDB, unless the ESDS already
contains records when opened by your product. NCL procedures that reference
the UDB should ignore this first record. If preparing for unmapped processing of
an NCL-created ESDS UDB, use IDCAMS to REPRO the data set skipping, the first
record.

Write to SYSOUT as an ESDS

An ESDS UDB that is actually a SYSOUT data set (z/OS systems only), allocated
dynamically using the ALLOCATE command, does not require initialization and
therefore this processing is bypassed. SYSOUT data sets can therefore be
written directly from NCL procedures without an initialization record appearing
on the output.

Notes:

■ Your product does not load alternate indexes. You must do this using the
IDCAMS BLDINDEX function.

■ The Dataset Services SUBMIT option provides a simpler way of creating
SYSOUT data sets.
For more information about Dataset Services options, see the Network
Control Language Reference Guide.

Control UDB Performance and Resource Usage

The techniques used by NCL should ensure efficient processing of VSAM files.
Additional performance gains can be obtained by the allocation of additional
buffers and processing strings. This is achieved using the JCL AMP statement sub
parameters on the DD statement for the file or options on the UDBCTL
command:

BUFNI

The number of index buffers to be allocated by VSAM

BUFND

The number of data buffers to be allocated by VSAM

Work with UDBs

192 Network Control Language Programming Guide

STRNO

The maximum number of concurrent strings VSAM is to use

By default, your product allocates 2 data buffers, 3 index buffers and 2
processing strings unless alternative values are provided as described.

This buffer allocation applies per string-that is, allocation of a complete set of
buffers is performed by VSAM for each concurrent position held on the UDB.
Where the usage of a UDB is such that a large number of concurrent accesses to
the UDB might be possible, care must be taken that VSAM buffer allocations do
not lead to storage shortages affecting the performance of other product
functions. Also, in cases such as these, NCL procedures should be written to
avoid the maintenance of generic UDB processing environments over long
periods.

While varying these parameters can offer significant performance benefits, they
should only be changed if the impact on VSAM processing is clearly understood.
Incorrect changes can impose severe storage overheads which could impact the
operation of other system components.

Add Records to a UDB

The &FILE ADD statement is used to add new records to a UDB. The &FILE PUT
statement can also be used to add records. However, whereas &FILE ADD
receives an error indication if a record with a like key exists, &FILE PUT will
replace a record with a like key. If an NCL procedure is known to be creating
new records then &FILE ADD should be used.

Before a record can be added, the key of the record must be identified. This is
done using the KEY= or the KEYVAR= operand on the &FILE statement. The KEY=
operand can be used in conjunction with the ADD and PUT operands.

The &FILE ADD statement is used to supply the data of the record to be added
to the UDB. Depending on the format of the UDB this could be a text string,
tokens, or an MDO.

The success of the &FILE ADD statement can be tested using the &FILERC (file
return code) system variable. If the &FILE ADD statement was not successful,
the &VSAMFDBK system variable will contain a standard VSAM completion code
indicating the type of error that occurred. For example:

&FILE OPEN ID=MYFILE FORMAT=DELIMITED

&FILE ADD ID=MYFILE KEY='RECORD1' VARS=A* RANGE=(1,7)

&IF &FILERC NE 0 &THEN &WRITE ERROR CODE=&VSAMFDBK

Work with UDBs

Chapter 8: NCL File Processing 193

SYSOUT Considerations

A SYSOUT data set (z/OS) can be defined as a UDB and be the subject of &FILE
ADD (or &FILE PUT) statements. The SYSOUT data set appears to your product
as a VSAM ESDS.

NCL procedures can use &FILE ADD or &FILE PUT statements to write to SYSOUT
UDBs. The UDB should be treated as a mapped or unmapped format file and
processed using the unmapped format option.

NCL supports both ANSI and machine print control characters. However, CA
recommends that you use ANSI characters because they are easier to use.

On z/OS systems, NCL determines the record format (RECFM) of a SYSOUT data
set to decide if the data set is to be supported with ANSI print control characters
(RECFM=A) or machine control characters (RECFM=M). When the SYSOUT data
set is dynamically allocated the PRTCNTL operand can be used to specify which
format is required.

Format SYSOUT Output

When processing SYSOUT data sets in ANSI format the &FILE PUT/ADD
statement supports specification of formatting options such as skipping to new
pages, line spacing, bolding, and underscoring using the PRTCNTL operand. As
such the print character is never formatted by the user as part of the output
data. When processing with machine control characters, the user is responsible
for formatting the output data with the appropriate control character as the
first character of the output data.

When processing an ANSI format SYSOUT file (RECFM=A or PRTCNTL=A)
additional sub-operands of PRTCNTL allow left or right justification or centering
of the data. In such cases the logical width of the report is determined by the
logical record length (LRECL) of the data set. This too can be specified on the
ALLOC command using the LRECL operand. The width specified does not include
the print control character which will be allowed for and added internally.

If the data set is the z/OS internal reader (INTRDR, which must be allocated
dynamically), it can be treated as an unmapped format UDB, in which case
written records are interpreted as JCL. In this way, jobs can be submitted for
execution.

When submitting jobs in this way, the job number of the submitted JCL stream
can be obtained by issuing &FILE GET ID=name END. The job number is returned
in the variable &ZJOBNUM.

Work with UDBs

194 Network Control Language Programming Guide

Update Records in a UDB

The &FILE PUT statement is also used to update records in a UDB. A record can
either be updated by first reading it with an &FILE GET statement and then
replacing it with an &FILE PUT statement or by replacing it directly with an &FILE
PUT statement. The method chosen will be determined by the application.
Regardless of the method to be utilized the key of the record is identified using
the KEY= or KEYVAR= operand on the &FILE statement.

If the key was specified on the &FILE GET statement, there is no need to specify
it again on the &FILE PUT statement because the retrieved key remains current
for the file.

If the possibility exists that multiple updates for the same record can be
attempted concurrently, precautions must be taken to ensure that updates are
not lost or inadvertently overwritten.

The success of the &FILE PUT statement can be tested using the &FILERC system
variable. If the &FILE PUT statement is not successful the &VSAMFDBK system
variable contains a standard VSAM completion code indicating the type of error
that occurred. For example:

&FILE OPEN ID=MYFILE FORMAT=DELIMITED

&FILE GET ID=MYFILE KEY='RECORD1' VARS=B*

&IF &FILERC NE 0 &GOTO .NORECORD

 .

 .

 . update data

 .

 .

&FILE PUT ID=MYFILE ARGS RANGE=(1,7)

&IF &FILERC NE 0 &WRITE DATA=ERROR CODE=&VSAMFDBK

&FILE PUT will replace a record which already exists. Where multiple concurrent
updates are possible the NCL procedure must ensure that it has exclusive
control of a record prior to issuing the &FILE PUT statement to update it. This
can be achieved by first reading the record with an &FILE GET statement that
specifies the OPT=UPD operand. This operand indicates that exclusive control of
the record is required. If the record is already in use, the &FILE GET statement
fails with &FILERC set to 8 and &VSAMFDBK set to 14. The NCL procedure can
then take alternative action, such as delaying processing for a short period
before retrying the &FILE GET. Having obtained the record the &FILE PUT
statement can be issued to complete the update.

Work with UDBs

Chapter 8: NCL File Processing 195

When using &FILE GET with the UPD option, the NCL procedure should
complete processing of the record as quickly as possible. It is not good practice
to obtain exclusive control of a record and then issue a full-screen panel which
waits for operator input. This can delay other users for excessive periods.

An example of a procedure using the &FILE GET ... OPT=UPD operand follows.
This example issues a one second delay if exclusive control of the record cannot
be obtained, and then retries the &FILE GET.

&FILE OPEN ID=MYFILE FORMAT=DELIMITED

.RETRY

 &FILE GET ID=MYFILE KEY='RECORD1' OPT=UPD ARGS

 &IF &FILERC EQ 0 &THEN &GOTO .UPDATE

 &IF &FILERC EQ 8 AND &VSAMFDBK EQ 14 &THEN &GOTO .WAIT

 &ENDAFTER &WRITE DATA=ERROR CODE=&VSAMFDBK

.WAIT

 &DELAY 1

 &GOTO .RETRY

.UPDATE

 .

 .

 . update data

 .

 .

&FILE PUT ID=MYFILE ARGS RANGE=(1,7)

&IF &FILERC NE 0 &THEN &WRITE DATA=ERROR CODE=&VSAMFDBK

Delete Records from a UDB

The &FILE DEL statement is used to delete records from a UDB. Two techniques
can be used:

■ Deletion by specific key-the full key of the record to be deleted is supplied.
Only the record with this key is deleted.

■ Deletion by generic key-a partial key is supplied. Any record that matches
this partial key (KEQALL) or is equal to or greater than this partial key
(KGEALL) is deleted.

The KEY= or KEYVAR= operand can be used to specify the full or partial key to be
used for the delete.

Work with UDBs

196 Network Control Language Programming Guide

Deletion of a single record can be achieved as shown in the following example:

&FILE OPEN ID=MYFILE FORMAT=DELIMITED

&FILE DEL ID=MYFILE KEY='RECORD1'

If a partial key is provided for a single record delete, NCL deletes the first record
on the file that matches the partial key.

If a group of records is to be deleted, a partial key that identifies the first record
in the group must be specified on the KEY= or KEYVAR= operand. Then either of
the following two values must be set for the OPT= operand.

KEQALL

Delete this record and all following records that have keys equal to the
partial key provided.

KGEALL

Delete this record and all following records that have keys equal to or
greater than the partial key provided.

The success of the &FILE DEL statement can be tested using the &FILERC system
variable. If the &FILE DEL statement was not successful, the &VSAMFDBK
system variable will contain a standard VSAM completion code indicating the
type of error that occurred. For example:

&FILE OPEN ID=MYFILE FORMAT=DELIMITED

&FILE DEL ID=MYFILE KEY='RECORD' OPT=KEQALL

&IF &FILERC NE 0 &WRITE DATA=ERROR CODE=&VSAMFDBK

The number of records deleted by an &FILE DEL statement is returned in the
system variable &FILERCNT, which can then be used, for example, as feedback
information for display on a panel. That is:

&FILE OPEN ID=MYFILE FORMAT=DELIMITED

&FILE DEL ID=MYFILE KEY='RECORD' OPT=KGEALL

&WRITE &FILERCNT RECORDS DELETED

&FILERCNT remains until the next &FILE DEL, or the file is closed, or processing
changes to a different file. In the last case, &FILERCNT changes to reflect the
number of records deleted on the file that is now being processed.

Use of generic delete functions is of value when large numbers of records are to
be deleted from a UDB and gives better performance than the use of multiple
single record deletes.

Work with UDBs

Chapter 8: NCL File Processing 197

Retrieve Records from a UDB

The &FILE GET statement is used to retrieve records from a UDB. A number of
techniques can be used:

■ Retrieval by specific key-the full key of the required record is supplied. Only
a record with this key will be returned.

■ Retrieval by generic key-a partial key is supplied. Several values can then be
used on the OPT= operand to determine the first record retrieved and the
direction in which processing will continue: KEQ, KGE and KGT return the
first record with a key equal to, equal to or greater than, or greater than the
partial key (respectively), and set the retrieval direction to forwards, while
KEL, KLE and KLT return the highest record with a key equal to, equal to or
less than, or less than the partial key (respectively), and set the direction to
backwards.

■ Sequential retrieval-no key is supplied. Records can be returned in
ascending or descending key order, commencing with the lowest key or
highest key in the file respectively, and continuing forwards or backwards
through the file until sequential retrieval is terminated.

Before a record can be retrieved (except for sequential retrieval) a key or partial
key must be identified. This is done using the KEY= or KEYVAR= operand on the
&FILE GET statement. It is possible to identify the key prior to the &FILE GET (for
example, for sequential retrieval) by specifying the KEY= or KEYVAR= operand
on a &FILE SET statement.

The success of the &FILE GET statement can be tested using the &FILERC system
variable. If the &FILE GET statement was not successful the &VSAMFDBK system
variable contains a standard VSAM completion code indicating the type of error
that occurred. &FILERC signals end-of-file conditions as well as error conditions.

If generic retrieval or sequential retrieval is performed, the full key of the
retrieved record is placed in the &FILEKEY system variable. For example:

&FILE OPEN ID=MYFILE FORMAT=DELIMITED

&FILE SET KEY='REC'

.NEXTREC

 &FILE GET OPT=KEQ VARS=A*

 &IF &FILERC EQ 4 &THEN &ENDAFTER &WRITE DATA=END-OF-FILE

 &ELSE &IF &FILERC NE 0 &THEN &ENDAFTER &WRITE +

 DATA=ERROR=&VSAMFDBK

 &WRITE DATA=THE RECORD KEY RETURNED = &FILEKEY

&GOTO .NEXTREC

Work with UDBs

198 Network Control Language Programming Guide

Continuation of a generic retrieval depends on the next &FILE statement. Any
statement other than another &FILE GET, destroys the current file position, and
ends the generic retrieval. If an &FILE GET statement is issued with a different
key from that issued on the first generic &FILE GET, the generic retrieval ends,
otherwise the key used on the statement is ignored, and retrieval is determined
by the current file position.

When a generic read is performed (for example, when using the OPT=KEQ or
OPT=KGE operand on &FILE GET), NCL maintains a generic environment until
the NCL procedure specifically stops using generic retrieval, for example by
issuing &FILE GET OPT=END. The maintenance of this generic environment holds
the current position within the UDB, but in doing so necessarily uses VSAM
buffer space. In procedures such as EASINET where there can be much
concurrent UDB activity, it is important to keep the length of time that generic
environments are open to a minimum and to avoid the use of generic
processing where it is not necessary-for example, if &FILEKEY has been set to
the full key of a record, do not use &FILE GET OPT=KEQ to read the record.

Restrictions When Using UDBs

When designing facilities that will use file processing the following must be
taken into account:

■ All records must be keyed, unless processing with an ESDS.

■ Keys must range in size from 1 to 255 bytes.

■ Keys for base clusters must start in position 0 (unless processing in
unmapped mode) of the record. This is often termed relative key position
(RKP) 0.

■ Allowance should be made for field separators, or length and tag bytes
added by NCL when determining record sizes for mapped or delimited files.

■ The maximum record size is 32K when doing I/O from NCL variables.
Otherwise it is the maximum record size for the file.

■ When retrieving records, fields are returned in variables which have a
maximum length of 256 characters. Creating fields in excess of this length
might not be practicable, although a field in excess of 256 characters can
span multiple variables after an &FILE GET.

■ Unmapped format UDBs have no record structure maintained by NCL. The
user is responsible for determining the record format of unmapped format
files.

Work with UDBs

Chapter 8: NCL File Processing 199

■ Mapped and unmapped format UDBs can contain non-character data. The
user must make allowance for this and might want to convert the data to
expanded hexadecimal format after it is retrieved from an unmapped
format UDB.

■ If a UDB is of a format describable to Mapping Services using a map, then
mapped format processing can be performed on it.

Create UDBs with Alternate Indexes

The description of UDB usage in the preceding sections has been restricted to
the processing of records that are identified by a record key starting at position
0 in the record. This is referred to as the base key for the file.

The base key allows an NCL procedure to position a UDB to a particular record
or group of records within the file, based on the comparison of a key provided
as an argument against the keys of records present on the file.

This method of accessing records is adequate for many NCL applications.
However, there are other applications which might require access to records
within the UDB based on more than one argument.

The use of alternate indexes provides a means by which many arguments can be
used to position a UDB to a particular record or record group and allows many
different views of the same data held in a single UDB.

As an example, an installation that runs EASINET to provide access to all VTAM
applications within its network uses the special LOGPROC NCL procedure to
monitor the passing of EASINET controlled terminals to different applications.
Each time a logon request is processed, a message is written to the activity log.
It is intercepted by LOGPROC and a record written to a UDB that records the
time, target application, and name of the terminal concerned.

This information is built up over time and NCL procedures are written to analyze
the activity represented by the data on the UDB, where analysis is required by
time, by application and by terminal name.

If the base key of the UDB starts with, for example, a time stamp, then the UDB
is seen by NCL as being sorted in ascending time stamp order. In this case UDB
processing using the time as an argument is very simple; however, if an analysis
of the UDB by terminal name is required, the UDB can still be positioned only by
the time argument, which is not what is required.

Work with UDBs

200 Network Control Language Programming Guide

Alternate indices which allow the UDB to be viewed by NCL as being sorted in
orders other than by time (for example, by terminal name or by target
application name), simplify the processing required in procedures that need to
analyze the UDB using arguments that are not satisfied by the base key of the
file.

The following sections describe the steps required to create alternate indices for
a UDB, the use of alternate indices within NCL procedures and the
considerations associated with their use.

VSAM Considerations for Alternate Indexes

An alternate index is an individual VSAM data set, maintained by VSAM, which
contains information and keys to the base cluster VSAM data set to which the
index applies. It can be regarded as providing the user with a different view of
the data within the base cluster. As changes are made to records on the base
cluster, VSAM (provided that the correct options are defined) automatically
updates the alternate indexes associated with the cluster.

VSAM relates an alternate index to its target base cluster with a definition
known as a path. It is this path which NCL uses to retrieve data using keys from
the alternate index.

A given base cluster can have many alternate indices, depending on the
complexity of the record formats maintained on the UDB and the number of
different ways those records are to be accessed.

The process to establish a new base cluster with an alternate index is:

■ Define the base cluster using the IDCAMS DEFINE CLUSTER function.

■ Load the base cluster. This is done using the VSAM IDCAMS utility REPRO
statement.

■ Define the alternate index using the IDCAMS DEFINE AIX function.

■ Define the path using the IDCAMS DEFINE PATH function.

■ Build the alternate index using the IDCAMS BLDINDEX function.

This cannot be done for an empty base cluster.

Add DD statements to the system JCL for both the base cluster and the path
(but not the alternate index).

■ Assign file IDs to UDBs using the UDBCTL statement.

Work with UDBs

Chapter 8: NCL File Processing 201

Notes:

■ When defining a base cluster with an alternate index, both the base cluster
and the alternate index must be defined with VSAM SHAREOPTIONS

■ of (3 3). This is necessary as two ACBs will be used, one to reference the
base cluster and a second to reference the path. A reference to a path
causes both the base cluster and its associated alternate index to be
opened. VSAM therefore sees two concurrent users of the base cluster.

■ If duplicate keys are to be allowed on the alternate index, the
NONUNIQUEKEY operand must be used when the index is defined.
Duplicate keys on the alternate index are likely when the alternate index
key is positioned over part of the base key of a cluster.

■ To establish an alternate index for an existing base cluster, the same
procedure is followed but with the omission of the first two steps (that is,
defining and loading the base cluster).

Key Structures and Alternate Indexes

The record key used when processing a base cluster UDB can be 1 to 255 bytes
in length and usually starts at offset 0 in the record.

When accessing a base cluster by an alternate index, a key is still used, but the
key could be located anywhere within the record that it identifies. The precise
location of the key within the record is defined (as an offset from the start of
the record) when the alternate index is defined.

This figure shows a representation of two records on a base cluster. The base
key of each record starts at offset 0 and is 10 bytes long. In the example the
base keys of the two records are:

RECORD0001

RECORD0002

Work with UDBs

202 Network Control Language Programming Guide

An alternate index is associated with the base cluster and has been defined with
a key that is 8 bytes long and starts at offset 10 in the record, that is, it follows
the base key of the record.

In the example the alternate index keys have values of:

LU42600A

LU01290A

Additional alternate index keys can be defined which span different strings
within the base cluster record.

Retrieve Data Using Alternate Indexes

Access to UDBs via an alternate index is similar to standard base key access, but
the way the data is presented to the NCL procedure after completion of the
&FILE GET is different.

As with standard base cluster usage, the NCL procedure must nominate the UDB
to be processed:

■ For base cluster processing, the ID operand on the &FILE statement is used
to identify the logical file ID associated with the DD statement that defines
the base cluster data set in the execution JCL.

■ For alternate index processing the ID operand on the &FILE statement
identifies the logical file ID associated with the DD name that defines the
Path to be used. (Remember that access to a cluster using an alternate
index is achieved via a VSAM path definition only and that no direct
processing is done on the alternate index cluster itself.)

Work with UDBs

Chapter 8: NCL File Processing 203

This figure shows the different views of the data in two records on a base
cluster that are seen when the UDB is accessed through the base key or through
the alternate index key. (In each of the example records shown, the key portion
is shown in plain text and the data portion is shown underlined.)

This figure show an example of reading records by using the base key. In the
example shown in these figures, the UDB is a UDB (or delimited) format file and
each record contains two data fields. The data fields are each terminated by a
field separator (X'FF'), although these are not shown in the diagrams. The
alternate index key in this example is chosen to overlay exactly the first data
field, but does not include the field separator character at the end of the field.

The base key's view of a record on the UDB is that the first 10 bytes of a record
are its key and that everything else is data. The alternate index view shows that
everything is data, apart from the 8 bytes starting at offset 10 in each record.
following example shows the effect of these conflicting views on the data
actually presented to an NCL procedure on completion of an &FILE GET
statement.

Work with UDBs

204 Network Control Language Programming Guide

For the example, we will assume that the logical File ID to be used when
accessing the base cluster directly is MYBASE and the logical file ID used to
access the base cluster via its alternate index is MYPATH.

The previous figure shows how data is presented to an NCL procedure that
reads records from the example UDB, using the base key to access the file. As
noted before, it is assumed here that the alternate key is in fact a separate field
within the record, although this does not have to be the case.

This figure shows the same sequence of events, but with access to the UDB
being via the alternate index. There are two significant differences in the results
of the &FILE GET statements compared with using the base key:

■ The order of the records is different.

■ The data presented in the &FILE GET variables is different.

Records on the UDB are always arranged in ascending key order, according to
the key being used to access the UDB.

Work with UDBs

Chapter 8: NCL File Processing 205

Therefore, when using the base key the order of the records on this example
UDB is:

RECORD0001........

RECORD0002........ and so on.

However, when viewed from the perspective of the alternate index, the order of
the records on the UDB has nothing to do with the value of the base key; as far
as the alternate index is concerned the UDB is arranged in ascending order of
the alternate keys of the various records on the file. As a result, when accessing
records via the alternate index, the order becomes:

LU01290A.......

LU42600A....... and so on.

and so, as shown in the figures, the order in which the physical records are
retrieved from the UDB depends upon which key is being used to access the file.

Control UDB Availability

As described earlier, UDBs are made available to NCL procedures through the
UDBCTL command, which assigns a logical file ID. For more information about
the UDBCTL command, see the Online Help.

For a variety of reasons you might want to change the availability of UDBs from
time to time. The UDBCTL command provides the following facilities:

Stop a UDB

This logically blocks all further attempts to access the specified UDB from
any procedure, so that no further &FILE statements which specify the ID for
this UDB will be allowed. The physical data set remains open. STOP is
rejected if there is any current user of the file.

Close a UDB

Implies a STOP and physically closes the file. This might be necessary if
external updating of the UDB is required while the file is still allocated to
your product.

Reset a closed UDB

In VSAM terms, RESET causes your product to open the VSAM ACB with the
RST option, which has the effect of emptying the entire file. VSAM
constraints mean that RESET cannot be used on UDBs unless they are sub
allocated (in those levels of VSAM that support sub allocation) and is not
allowed if the cluster is defined with KEYRANGES or has alternate indexes
associated with it.

Work with Files

206 Network Control Language Programming Guide

Open a UDB

Reopens a previously-closed UDB. If the UDB had also been RESET and has
not been loaded externally before re-opening, Your product will initialize
(see page 190) the file. A UDB that is OPENED requires re-assignment of its
logical file ID before it becomes available for processing again.

These UDBCTL options provide operational control over the availability of UDBs
to the product region. UDBCTL can itself be issued from within NCL procedures
by suitably-authorized users.

Work with Files

NCL includes an &FILE verb that provides the high-level interface to its file
processing facilities. The verb has seven major operands:

&FILE OPEN

Opens a file and identifies its processing mode

&FILE SET

Sets the default file ID, sets the full or partial key, sets the processing mode
for subsequent processing

&FILE ADD

Adds a record

&FILE GET

Retrieves a record

&FILE PUT

Adds or updates a record

&FILE DEL

Deletes a current record

&FILE CLOSE

Releases file processing connections

The following system variables are provided to help test the success of
functions:

&FILERC

the completion code for the last function

Work with Files

Chapter 8: NCL File Processing 207

&FILERCNT

the number of records processed by the last generic delete (&FILE DEL)
operation

&VSAMFDBK

the VSAM RPL feedback code from the last function

&FILEKEY

the key of the last record referenced

Note: For more information about the &FILE verb and system variables, see the
Network Control Language Reference Guide. For more information about the
UDBCTL command, which is used to control the availability of UDBs for
processing, see the online help.

Logical File Identifiers

When using NCL, files are referenced by a logical file identifier or file ID. The file
ID provides a logical connection to the physical data set. A file ID must be
assigned using the UDBCTL command before a file can be referenced by an NCL
procedure.

Suppose, for example, that you want to process a file called HELPDESK.DATA,
which is defined by using the ALLOCATE command with a DD name of HELPDB1
and all NCL procedure references to the physical file are to be made to the
symbolic name HELPDESK.

Before the file HELPDESK.DATA can be processed by NCL, a UDBCTL command
must be executed specifying the symbolic name by which this file will be
referenced from NCL procedures. This UDBCTL command relates the DD name
of the data set with its symbolic name and is coded:

UDBCTL OPEN=HELPDB1 ID=HELPDESK options

For a particular NCL procedure to access the file that has now been assigned the
symbolic, or logical name of HELPDESK, the procedure must contain an &FILE
OPEN statement specifying the file that is to be processed:

&FILE OPEN ID=HELPDESK FORMAT=DELIMITED

This approach offers considerable flexibility when it becomes necessary to
change the system configuration, since all NCL procedures reference files using
their logical file ID and are therefore shielded from external changes.

Work with Files

208 Network Control Language Programming Guide

Should a data set become full, a single UDBCTL command can simultaneously
migrate all NCL procedures to reference a new data set without change to the
NCL procedures. Consider our example using the HELPDESK file. It might be
desirable at the end of the day to swap to another data set and perform other
processing on the previous day's data while continuing to record new problems
in another file. You would allocate multiple data sets and use a UDBCTL
command at the appropriate time to swap to an alternative data set. For
example:

UDBCTL STOP=HELPUDB1(stop current use)

UDBCTL OPEN=HELPUDB2 ID=HELPDESK(swap to new file)

The NCL procedures continue to use the same ID on the &FILE statement, but
now use a different physical data set as the UDBCTL command has changed the
logical relationship:

&FILE OPEN ID=HELPDESK FORMAT=DELIMITED

(NCL procedure is unchanged)

Release File Processing Resources

The &FILE OPEN statement allocates certain resources to the requesting NCL
procedure. It is not normally necessary to release file processing resources
within an NCL procedure. This is performed automatically when the NCL
procedure terminates.

Under certain circumstances, such as in an EASINET procedure, where there
might be many concurrent users performing file processing, it might be
desirable to release any file processing overheads when they are no longer
required, to ensure that system overheads are minimized.

This can be accomplished using the &FILE CLOSE statement. &FILE CLOSE allows
specific files or all files to be freed. When this is done, any storage associated
with processing the file is released and the connection is logically severed for
that user.

Having used &FILE CLOSE to release a particular file, connection can be
re-established using another &FILE OPEN statement.

&FILE CLOSE destroys any generic retrieval position a user might have
established within a file and any subsequent reference would have to
reestablish that position if required.

Work with Files

Chapter 8: NCL File Processing 209

Display File Information

The SHOW UDB command can be used to display details about files available to
the system. This information includes details about the number of active users,
space usage, and the status. In addition, any open error codes that caused a file
to be disabled are displayed.

The SHOW VSAM command is used to display the VSAM attributes of the
various VSAM data sets in use by your product. Information presented by this
display includes:

■ Record sizes

■ Control Interval sizes

■ Control Interval and Control Area split statistics

■ Current index and data buffer allocations

■ Information about string and buffer shortages

■ LSR pool statistics (in z/OS systems)

The SHOW UDBUSER command is used to obtain information about current
usage of particular UDBs in the system. The display lists all UDBs showing DD
names, file IDs, and the names of the user IDs and NCL procedures that are
currently accessing each UDB.

Note: For more information about the SHOW UDB, SHOW VSAM, and SHOW
UDBUSER commands, see the online help.

Specify the File Processing Mode

The &FILE statement has a mandatory ID=file_id operand. This operand
identifies the UDB on which the NCL verb acts. The ID operand enables several
files to be open and processed simultaneously. You specify a FORMAT operand
with the OPEN or SET operands (that is, &FILE OPEN ID=... FORMAT=... and
&FILE SET ID=... FORMAT=...). The FORMAT operand is used to specify the
current processing mode for a file (delimited, unmapped, or mapped). You can
switch between two file formats without losing position.

Work with Files

210 Network Control Language Programming Guide

Specify the File Key

You can specify a file key on an &FILE statement in several ways. The way in
which the value is specified on the KEY= operand is independent of the current
processing mode (delimited, mapped, or unmapped). The value of the KEY=
operand is interpreted as a character string by default. The value can be
specified inside quotes, and substitution is carried out on any variables
contained inside the quotes. You can put the letter X after the quotes to
indicate that the data between the quotes is to be hexadecimal-packed to
create the key.

Example: Specify the File Key

If &A=AAAA, both examples indicate a key of 'AAAA 0001':

KEY='&A 0001'

KEY='C1C1C1C140F0F0F0F1'X

also indicates a key of 'AAAA 0001'

There is also a KEYVAR= operand on the &FILE verb, which is an alternative to
the KEY= operand. The KEYVAR operand is used to specify a variable whose
contents is used as the key. For example, KEYVAR=A indicates that the contents
of the variable &A is used as the key. In this case, if &A contains non-printable
characters or trailing blanks, they appear in the key unchanged.

Work with Data

Chapter 8: NCL File Processing 211

Work with Data

As with other NCL functions, data manipulated by file processing is usually
maintained in tokenized form (for example, as NCL variables). The &FILE verb
also enables data to be maintained in an MDO, but only for mapped format file
processing. A typical NCL procedure might accept input from a full-screen panel
in a series of tokens or variables and then add this data to a UDB. Alternately, it
can receive data from another application using APPC into an MDO, and then
add this data to a mapped format UDB.

The physical representation of the data on the UDB depends on its format:

■ For mapped format files using $NCL map, the record consists of a list of
vectors. Each vector has a two byte length field followed by a two byte tag
which is followed by the data from the token. The entire list is encapsulated
with its own two byte length and tag fields. For more information about the
data structure and tag values, see the distributed $NCL map.

■ For unmapped format files, the file processing statements still use variables,
but NCL does not regard each variable as a field within the record. When
writing a record to an unmapped format UDB all variables are written
contiguously (that is, no field separators are inserted). The structure of the
data within the record is therefore the responsibility of the user.

■ For delimited format files, each variable is treated by NCL as a field within a
record, each field being separated from its neighbor by a field separator.
When data is retrieved it is returned in a series of variables using the field
separators to determine the size of each field. This approach relieves the
procedure of having to define the format and structure of data in UDBs.

When data is retrieved from an unmapped format UDB, NCL again makes no
attempt to identify individual fields within the record. The entire record is read
from the UDB and then split into as many variables as are necessary to hold the
data that has been read. Alternatively, the user can indicate how many bytes of
data from the record are to be placed into each variable on the &FILE GET
statement.

When data is retrieved from a mapped format UDB it is placed into an MDO
unchanged from the way it existed on the file. It is also possible to specify the
name of a map on the file verb which will be attached to MDO when data is
placed into it. When writing to a file using mapped format, the contents of the
MDO are simply placed on the file as they are.

Work with Data

212 Network Control Language Programming Guide

Data Set Positioning and Generic Retrieval

NCL supports both sequential and generic retrieval from keyed data sets. Such
functions imply that a current position within the file is maintained so an NCL
procedure can simply request the next record and it will be supplied. No
incrementing of keys by the NCL procedure is necessary.

Under certain circumstances, such as with generic retrieval, it might be
necessary to alter the retrieval sequence and commence retrieval using a
different key.

NCL must be informed that such a change is required and that the current
retrieval sequence is to be stopped. This is done using the &FILE GET ID=name
OPT=END statement. This indicates to NCL that generic retrieval is to be
terminated in anticipation of some other processing.

If an end-of-file condition is signaled, no &FILE GET ID=name OPT=END is
required. The use of a non-generic function, such as the specific retrieval of a
record, or the use of the KEY= or KEYVAR= operand on the &FILE verb to set the
current key, will also cancel a previous generic function.

You can use KEY=' ' and the generic option together, in which case the key is
used to gain initial position for the generic retrieval. Subsequent generic
retrieval requests continue from this position, as long as the key supplied (if
any) is the same as the initial key.

Work with Data

Chapter 8: NCL File Processing 213

Mapped Format Files: Data Representation

When a file is processed using the mapped format processing option, a map is
used to describe the arrangement of the records. The map describes the records
in terms of structures or components. Maps are managed by Mapping Services
and exist as separate entities within your product. When carrying out a retrieval
using mapped format processing, the contents of the file record are usually
placed into an MDO, and a map is then used to interpret the contents of the
MDO.

It is also possible to read and write NCL tokens using mapped format processing.
This is a special case of mapped format processing and a special system map
called $NCL is used for this purpose. When NCL variables are written to a file
using mapped format processing, and the $NCL map, they appear on the file as
sub vectors. The sub vectors consist of a header followed by data. There is one
sub vector for each token written to the file. The sub vector headers consist of a
2 byte length field followed by a 2 byte key where the key is X'0000'. (For
example, a variable containing the value X'C1C1' would appear on a file record
as: X'00060000C1C1', where 0006 is the length, 0000 is the key, and C1C1 is the
data.)

The process of writing variables to a mapped format file using the $NCL map is
reversible. This means that if a set of variables is written to a record under these
conditions, and the contents of this record are then read back into the variables
at some other stage, the original values contained in the variables will be the
restored.

Note: This allows tokens containing non-printable characters to be handled,
that is, data transparent.

Work with Data

214 Network Control Language Programming Guide

Unmapped Format Files: Data Representation

Unmapped format UDBs, which are usually files created or processed by
mechanisms other than NCL, can contain noncharacter hexadecimal data (for
example, records can contain strings of binary zeros). When data is read from a
file using unmapped mode, the entire record is read in byte-for-byte as is, and
non-printables remain as they appeared on the file. The data is placed into
variables in lots of 256 bytes (the maximum variable size) unless otherwise
specified. If the data contains non-printables, expand the data to hexadecimal
using the &HEXEXP statement before processing it. You can specify a length of
128 for each variable on the &FILE GET statement, so that no overflow occurs
when the data is hexadecimal expanded.

Note: Most data formats are most conveniently processed using mapped format
files and maps developed using Mapping Services.

When writing to an unmapped file, the contents of the output buffer are placed
onto the file unchanged, including non-printables. If VARS= or ARGS is specified
on the &FILE PUT/ADD statement, the contents of each of the variables are
concatenated and placed onto the file. Any non-printables that were contained
in the variables are also placed onto the file. If DATA= is specified on the &FILE
PUT/ADD, substitution takes place on the buffer before it is written to the file.

If any of the variables specified following the DATA= operand contain
non-printables, these are preserved. Spaces and text between variables is also
written to the file.

For example, if the variable &A contains X'C100C1' and the variable &B contains
X'C200C2', then after the following statement is executed:

&FILE PUT ID=MYFILE DATA=&A XXX &B

the following result appears on the file:

X'C100C140E7E7E740C200C2'

Work with Data

Chapter 8: NCL File Processing 215

One of the principal uses for unmapped format processing is in the dynamic
preparation of reports from NCL procedures (particularly on z/OS systems):

1. An ESDS UDB is allocated dynamically to SYSOUT.

2. Report lines are written in unmapped format.

3. The UDB is then closed for immediate printing.

When using &FILE PUT/ADD to write to SYSOUT file, carriage control options are
available to assist with report formatting.

Note: For more information about the PUT and ADD operands, see the &FILE
verb in the Network Control Language Reference Guide.

DBCS Considerations When Using Files

If you write data to a UDB that represents a DBCS data stream, the data stream
is written to the file using shift characters that depend on the DBCS mode in
which your product is operating. This is determined by the SYSPARMS DBCS=
operand. A system that reads that file must therefore operate in the same DBCS
mode as the system that originally wrote the data, otherwise the reading
system will not be able to recognize the shift characters present in the data.

&FILE GET Statement and Unmapped Format UDBs

The &FILE GET statement is used to retrieve data from any type of UDB and
when issued causes NCL to present data to the NCL procedure in a series of
variables, or as an MDO.

It is only possible to use the MDO= operand for mapped format processing. As
described earlier, if the UDB is a delimited format file, each variable on the
&FILE GET statement is returned with the contents of field, where the fields are
segments in the record delimited by X'FF'.

However, if the UDB is an unmapped format UDB, NCL cannot provide the data
to the procedure as a set of individual fields-NCL has no knowledge of field
boundaries within the record.

Therefore, for unmapped format UDBs, NCL treats the record read from a UDB
as a single string and then splits this string into as many full-length variables as
are required to hold all the data, or as many as are provided on the &FILE GET
statement, whichever is the smaller number.

Work with Data

216 Network Control Language Programming Guide

A full-length variable is 256 characters long. It is also possible to indicate
explicitly how many bytes are to be placed into each variable.

For example:

&FILE GET ID=MYFILE VARS=(A(10),B(100),C(40))

indicates that the first 10 contiguous bytes of the record being read will be
placed unchanged into the variable &A, the next 100 bytes will be placed into
variable &B, the next 40 bytes will be placed into variable &C, and any
remaining bytes will not be placed into any variable (that is, they will be
ignored).

The following shows an example of using &FILE GET on an unmapped format
file.

&FILE OPEN ID=MYFILE FORMAT=UNMAPPED

&FILE SET ID=MYFILE KEY= 'RECORD1

'&FILE GET ID=MYFILE ARGS

Record contents

|C1|C2|C3|15|C4|15|F3|C5|15|15|15|F1|15||C1|C2|C3|15|C4|15|F3|C5|15|15|15|F1|15|

:&1 contents after &FILE GET:

|C1|C2|C3|15|C4|15|F3|C5|15|15|15|F1|15||C1|C2|C3|15|C4|15|F3|C5|15|15|15|F1|15|

Data Conversion and Unmapped Format UDBs

If data on an unmapped format UDB is expected to contain non-printable
characters it is wise after reading the data into variables to convert it to an
expanded hexadecimal form to preserve the non-printables (this is because
many NCL verbs automatically translate non-printables to blanks-X'40's).

Regardless of the data representation format selected on the &FILE OPEN/SET
statement, data read from or written to an unmapped format UDB might
require conversion from expanded hexadecimal format to character format, or
conversion from character to expanded hexadecimal format. Two NCL
statements, &HEXPACK and &HEXEXP provide this facility.

For example, where &HEXEXP is being used for file processing and data is being
read from a file which has records which consist of a 1 byte error code followed
by text. If the error code is not X'00', then there is a problem with the record.

Work with Data

Chapter 8: NCL File Processing 217

A record could be read from the file as follows:

&FILE OPEN ID=MSGFILE FORMAT=UNMAPPED

&FILE GET ID=MSGFILE KEY='00000001'X VARS=(ERRCODE(1),MSGTEXT)

&TEMP = &HEXEXP &ERRCODE

&IF &TEMP GT 00 &THEN &GOTO .ERROR

 .

 .

 .

&WRITE DATA=FOLLOWING MESSAGE READ FROM FILE: &MSGTEXT

The record with a key of X'00000001' was read into two variables, &ERRCODE
and &MSGTEXT. A subscript was used to indicate that the first byte was to go
into &ERRCODE, and the remaining bytes (up to 256) were to be placed into the
variable &MSGTEXT.

An &HEXEXP statement was used to convert the &ERRCODE variable from
binary (Packed hexadecimal) format into NCL format. (For example, if
&ERRCODE was X'00', &HEXEXP would convert it to X'F0F0'). This enabled the
value of it to be tested for an error condition.

Note: A map could be used to describe the file, and then the record could be
read into an MDO using mapped format.

Key and Data Differentiation

When a record is read from the UDB, whether it is a delimited format or an
unmapped format file, NCL normally performs the following steps when
preparing the data for presentation to the procedure, regardless of the key
under which the record has been retrieved.

■ The record is read as a single string.

■ The full key of the record is extracted and placed in &FILEKEY.

■ If the file being processed is a delimited format file and the record is not
read under the base key, the section of the record previously occupied by
the key is replaced by a field separator (X'FF').

■ The remaining data is placed into the variables nominated on the &FILE GET
statement according to the rules applicable to the type of UDB being
processed.

The significant point here is that the key under which the record is retrieved is
not, by default, regarded by NCL as part of the record data and does not
therefore appear in the &FILE GET variables.

Work with Data

218 Network Control Language Programming Guide

The result of this is that the same fields within a given record can be relocated
into different &FILE GET variables, depending upon which key is used to read
the record.

Previous figures show that when the records in the example are read by
successive &FILE GET statements, the two separate fields of which the records
are composed are placed into the two variables &1 and &2, as expected. &3,
specified on the &FILE GET statement, is set to null since no data was available
to place into it.

However, a different &FILE GET results when the alternate index is used to read
the same two records. NCL has obeyed the rules for data presentation with the
following result:

■ The record is read under the alternate index key.

■ The key used (LU01290A) is extracted and placed in &FILEKEY and replaced
with a X'FF' field separator. Remember that the key in this case is followed
by a field separator too, so now there are two consecutive field separators
in the record.

■ The data is placed into the nominated variables field-by-field, starting at the
left-hand end of the record. This results in values:

– &1 = RECORD0002

– &2 = null

– &3 = bbbbbbbb

– The reason that &2 is null is because that which used to be the key
value has been extracted from the record and replaced with a field
separator. As NCL scans the data to determine the location of the
various fields, two consecutive field separators are found indicating the
presence of a null, or zero-length field. Consequently, &2 becomes a
null variable. The result of this is that the data (bbbbbbbb) is no longer
located in the same variable as it was when the record was read under
the base key.

Note: When processing with alternate indices the positioning of the alternate
key can significantly impact the way in which an NCL procedure must process
the UDB. It is therefore recommended that you familiarize yourself with this
process and try a few simple examples first, to ensure you understand it.

Work with Data

Chapter 8: NCL File Processing 219

Key Extraction Options

The rules for data presentation allow accurate prediction of what each &FILE
GET variable contains regardless of which key is used to retrieve a record.
However, the effects of key extraction from record data can sometimes prevent
the use of common processing logic when the same procedure uses different
keys to access the same UDB.

The &CONTROL option NOKEYXTR lets you leave the key in the data portion of
the record (as well as placing a copy of the key in &FILEKEY as usual). This option
applies only when reading data using a key that does not start at offset 0 within
the record.

The effect of NOKEYXTR is to eliminate null variables occurring after an &FILE
GET (where the null represents the original location of the key). NOKEYXTR also
eliminates the splitting of single fields into two when the key happens to overlay
part of a single field.

Use NOKEYXTR in procedures that reference a UDB under multiple keys where
you want to provide common processing routines for specific fields within the
records.

Update Restrictions on Alternate Indexes

NCL supports the retrieval of data across any number of alternate indexes.
However, data updating is restricted to the base cluster for delimited format
files. If a record that has been retrieved using an alternate index is to be
updated, the ID operand on the &FILE statement is used to indicate that
processing has swapped to the base cluster, and that the necessary key must be
set (either on an &FILE SET or on the &FILE PUT) before the record can be
written back to the UDB.

Even when using the base cluster, the base key must start at offset 0 within the
record (RKP 0) for a UDB (or DELIMITED) format file. No updating is allowed for
any cluster which violates this rule.

This restriction does not apply to unmapped format UDBs which can be updated
even if the key does not start at offset 0. In this case if insufficient data is
supplied to the left of the start of the key, null padding (X'00') is added up to the
start of the key location.

Work with Data

220 Network Control Language Programming Guide

Offline Processing of Data Sets

On z/OS systems, the DEALLOCATE command can be used to release a UDB for
offline processing. Before you deallocate the UDB, it must be closed using the
UDBCTL command.

This can only be performed once all current users have ceased using the UDB. If
deallocation cannot be used, the stripping of files created by NCL for further
offline processing can be achieved without a restart of the system if the
following rules are followed:

■ VSAM SHAREOPTIONS must allow concurrent access to the data set.

■ DISP=SHR must be specified on the data set (Z/OS only).

■ The UDBCTL CLOSE=xxxxx operand is used to stop further logical
connections to the file and to close the physical data set. This is allowed
only if there are no users currently referencing the file.

■ Use a utility to strip the file (for example, the VSAM REPRO utility). Any
offline processing programs must take any high-value (X'FF') field separators
into account when determining record formats on UDB format files.

Back Up Online Data Sets

While standard batch utilities can be used to back up offline VSAM data sets,
they cannot be safely used to back up active online data sets.

Use an offline utility to back up only data sets that are closed and preferably
deallocated from your product.

If an offline utility is used to back up an active online data set, the backup
completes as though it were successful. A later restoration of that data set could
result in a corrupted file. The offline utility has no knowledge of the state of the
file, or any in-storage indexes or buffers that could have been written to the file
at the time of the backup.

Work with Data

Chapter 8: NCL File Processing 221

To resolve this problem, perform online backups of active data sets. You can use
the Dataset Services UTILITY option to invoke the IDCAMS utility and perform a
backup. When operating in this manner, the online utility has access to the in
storage buffers and indexes, and can guarantee a usable backup of the data set.

Note: For more information about Dataset Services options, see the Network
Control Language Reference Guide.

For operational reasons, it is still desirable to halt activity on a file temporarily
so that a precise recovery time is known.

Chapter 9: System Level Procedures 223

Chapter 9: System Level Procedures

This section contains the following topics:

System Level Procedures (see page 223)
Message Profile Concept (see page 226)
Intercept Solicited and Unsolicited VTAM Messages (PPOPROC Procedures) (see
page 227)
Intercept OCS Messages (MSGPROC Procedures) (see page 231)
User ID Considerations for System Level Procedures (see page 234)

System Level Procedures

NCL can be used to write private programs that are executed by command from
your OCS windows, or implicitly from options such as the User Services panel.

Another class of NCL process called system level procedures executes
exclusively in the NCL processing regions of certain background virtual users.
These system level procedures have access to the special information flows that
occur within your product region, namely:

■ The activity log

■ VTAM messages

■ EASINET terminal control data

■ OCS window traffic

System Level Procedures

224 Network Control Language Programming Guide

Activity Log

The stream of output messages to the activity log provides a serial record of all
activity in the system. Therefore, it is an ideal source of real-time information
about system events. While the log is accessible for on-line review by real
operators, there is a special background virtual user environment called
LOGPROC that directly accesses every message written to the activity log
through special NCL verbs:

■ The LOGFILES Customizer parameter group nominates the name of a
procedure that is to act as the LOGPROC procedure. As such, it can execute
these special verbs to see and modify messages destined for the activity log.

■ LOGPROC is a system level procedure (one per system) that can act as a
central intelligence point to monitor events being reported to the log. As
such, it can observe and react to unusual or critical conditions, and provide
a platform for automatic recovery action.

VTAM Messages

The VTAM primary program operator (PPO) interface lets your product receive
unsolicited messages from VTAM about network events that occur for reasons
other than from operator commands. For example, if an NCP fails, VTAM will
generate unsolicited messages notifying the PPO application of the occurrence.

The PPO interface can also be fed with commands and responses resulting from
operator action at the system console and from OCS windows within the region.

The stream of PPO messages represents a serial record of all unexpected events
within the VTAM network. As such it is an ideal source of information about real
time network failures.

System Level Procedures

Chapter 9: System Level Procedures 225

While PPO messages can be routed automatically to OCS and system console
operators for their attention, there is also a virtual user environment within
your product called PPOPROC that directly accesses every message (or a chosen
subset of messages) received from VTAM. This PPO message flow is accessed
only through special NCL verbs:

■ The SYSPARMS PPOPROC command nominates the name of a procedure
that is to act as the PPOPROC procedure, and as such can execute these
special verbs to see and modify PPO messages received from VTAM.

■ PPOPROC is a system level procedure (one per system) that acts as a central
intelligence point to monitor events being reported by VTAM. As such, it can
observe and react to unusual or critical conditions and provide a platform
for the collection of additional information about the event and for the
initiation of automatic recovery action.

EASINET Terminal Control

The EASINET feature lets you place all idle network terminals under the control
of your product whenever they are not natively logged on to another network
application.

The logic of the EASINET procedure determines how the feature handles
terminals.

Note: For more information, see the CA SOLVE:Access Session Management
Administration Guide.

OCS Window Traffic Handling

Each user operating one or two OCS windows is entitled (depending on their
user ID profile) to nominate a system level procedure to help them filter and
monitor messages sent to those windows.

These procedures are called MSGPROCs. The name of the procedure executed
for a user to act as the MSGPROC for each user OCS window is defined as part of
their user profile:

■ A MSGPROC procedure has access to the serial stream of messages sent to
the OCS window for which it is executing and can receive, modify, delete, or
react to any message or message group sent to the window.

■ MSGPROC procedures can therefore act as preprocessors for messages that
an operator would otherwise have to monitor.

Message Profile Concept

226 Network Control Language Programming Guide

Message Profile Concept

System level procedures access the messages flowing on their particular stream
by issuing specialized NCL verb read requests that are unique to each type of
system level procedure. For example, PPOPROC uses &PPOREAD to obtain the
next PPO message.

The processing that each system level procedure undertakes depends on
analyzing the messages that are supplied to it. To help analyze the message
received and decide the specific processing required, the concept of message
profiling is used.

A message that satisfies a system level procedure read request has a profile
containing the attributes associated with that message. For example, a
MSGPROC message profile includes not just message text but other information
about color, highlight options, or message origins that the MSGPROC procedure
might want to know or change or base some decision upon.

On completion of the read statement, all applicable message attributes are
made available to the system level procedure as a series of reserved system
variables known as message profile variables. An examination of the message
profile variables is often sufficient to make a decision on whether to perform
further analysis of the message, or to show that the message is of no interest to
the procedure.

More information:

Message Profile (see page 517)

Intercept Solicited and Unsolicited VTAM Messages (PPOPROC Procedures)

Chapter 9: System Level Procedures 227

Intercept Solicited and Unsolicited VTAM Messages (PPOPROC
Procedures)

The primary program operator interface (PPO) in VTAM can be defined so that
your product receives both solicited and unsolicited VTAM messages. An NCL
interface, named PPOPROC, is available to the VTAM PPO facility. PPOPROC can
use this information to monitor status changes of VTAM resources. By being
aware of status changes, PPOPROC can be the primary source of decisions
controlling automated reaction to events that occur within the network.

PPOPROC has four possible sources of information:

■ The VTAM PPO interface that delivers both unsolicited VTAM-generated
messages and optional, solicited messages from VTAM commands issued at
system consoles

This source depends on the VTAM PPOLOG initialization parameter.

■ Copies of commands and command responses resulting from operator
activity

■ Messages delivered to PPOPROC from &PPOALERT statements issued by
another NCL process

This facility generates test messages, and delivers them to PPOPROC for
development and testing. The facility also lets you generate a new PPO
message with more or less information than the original.

■ PPOPROC-related messages of the three preceding types routed from
remote regions across the Inter-System Routing (ISR) facility

PPOPROC messages from these sources can be used to report network resource
status changes to a central point. The change can be unexpected (in which case
VTAM reports the event as an unsolicited message) or in response to an
operator command.

Centralization can be achieved by routing all relevant PPO messages to a central
region. Several ISR options are used to facilitate this centralization.

You set up the central region for monitoring PPO messages with the ISR
ENABLE=PPO UNSOLICIT=INBOUND command. This setup allows the region to
receive PPO messages from remote regions. The remote regions specify ISR
ENABLE=PPO UNSOL=OUTBOUND to enable delivery of messages to the central
PPO processing link.

Intercept Solicited and Unsolicited VTAM Messages (PPOPROC Procedures)

228 Network Control Language Programming Guide

Filter Messages Seen by PPOPROC

PPOPROC is not necessarily interested in every message that could be sent to it.
To limit the number of messages PPOPROC has to process, your product uses
the message definition table (DEFMSG table), which specifies VTAM message
numbers that PPOPROC wants to see.

Very high message rates can occur at the PPO interface. Therefore the more you
can decrease the number of messages delivered by the DEFMSG filter, the more
efficiently your system will perform.

Modify the Message Definition Table: DEFMSG Command

The DEFMSG command lets you control message delivery for solicited and
unsolicited VTAM messages. Three delivery destinations can be specified for
each message:

■ PPOPROC

■ LOCAL (that is, to OCS operators)

■ REMOTE (that is, systems linked by ISR)

In addition, EDS events can be defined in the DEFMSG table for VTAM messages.

A default class of messages has been pre-defined to the message table and
initially set for delivery to all destinations. The delivery options for the default
class messages can be altered using the DEFMSG command; however they
always remain in the default class.

Message Filtering: Solicited Messages

Solicited messages are those generated as a result of VTAM commands. VTAM
commands can be sourced from a system console or issued by OCS operators or
NCL procedures. These messages always pass through message definition table
(DEFMSG) processing. Only those messages indicating PPOPROC delivery in the
DEFMSG table will be passed to PPOPROC for processing.

Note: Because they are normally displayed to the operator making a specific
request, these messages are never delivered to other LOCAL receivers.

Intercept Solicited and Unsolicited VTAM Messages (PPOPROC Procedures)

Chapter 9: System Level Procedures 229

Message Filtering: Unsolicited Messages

Unsolicited messages are generated by VTAM to notify of an unexpected status
change in the network-that is, a change which has not resulted from operator
action.

Unsolicited messages are only delivered to the destinations specified for the
VTAM message numbers in the DEFMSG table. If no delivery options have been
set for an unsolicited message number, the delivery options for the unsolicited
class entry are used, which, by default, are not set. To specify the delivery
options, issue a DEFMSG UNSOL DELIVER=delivery command.

Design a PPOPROC Procedure

A PPOPROC procedure should be written as a closed loop. When invoked, it
processes until the first &PPOREAD statement is detected and then suspends
processing until a message arrives.

As each message arrives, the procedure logic should branch to an appropriate
processing point for that message. After processing the message or a group of
associated messages, the procedure should then return to the initial &PPOREAD
where processing is suspended once again.

PPOPROC should be designed to START worker processes to analyze any serious
events reported and initiate recovery procedures so the main PPOPROC process
remains free to continue monitoring the unsolicited VTAM message flow.

Important! Be particularly careful when using verbs that are dependent on
events outside PPOPROC control (such as &INTCMD followed by &INTREAD) as
these can tie up PPOPROC processing and result in long PPO message queues.

If PPOPROC does end, an NRD message is sent to all monitor status OCS
operators, and normal PPO processing resumes.

Messages from PPOPROC

Messages from PPOPROC, including those issued by &WRITE statements or
resulting from commands executed from within PPOPROC, (unless &INTCMD is
used) are displayed, prefixed with a P, at all monitor status terminals.

Intercept Solicited and Unsolicited VTAM Messages (PPOPROC Procedures)

230 Network Control Language Programming Guide

PPOPROC Statements

Special processing verbs are provided for PPOPROC use:

■ &PPOREAD retrieves the next PPO message for processing

■ &PPOCONT returns a PPO message for normal delivery

■ &PPODEL deletes a PPO message

■ &PPOREPL replaces PPO message text

■ &PPOALERT generates a message to send to PPOPROC

For more information about these verbs, see the Network Control Language
Reference Guide.

Multiple occurrences of any of these statements simplifies the processing of
group messages, as the procedure can be structured for each type of message
being processed.

In addition, PPOPROC can start worker processes to gather other relevant
network information to act on PPO messages.

Test PPOPROC

The SYSPARMS PPOPROC command is used to invoke PPOPROC, and can also be
used to flush it. This allows a new copy of the PPOPROC procedure to be
invoked from a subsequent SYSPARMS command.

The &PPOALERT statement lets you generate test PPO messages which can be
used to check the logic of PPOPROC without having to wait for a real occurrence
of the message.

Note: The base PPOPROC procedure never uses a preloaded copy of the
procedure, so it is unnecessary to use the UNLOAD command. Other procedures
invoked from within PPOPROC will observe the normal preload conventions.

Intercept OCS Messages (MSGPROC Procedures)

Chapter 9: System Level Procedures 231

PPOPROC Prerequisites

The following prerequisites apply:

■ Before your product can receive messages from VTAM, a PPO START
command must be successfully executed to authorize the system for the
receipt of unsolicited VTAM messages. The PPO START opens the VTAM ACB
specified on the SYSPARMS PPOACBNM= to gain access to VTAM messages.
The STATUS command can be used to determine whether the system has
successfully executed a PPO START command.

■ To start your PPOPROC, specify SYSPARMS PPOPROC=procname.

■ If you want to receive copies of VTAM commands in your PPOPROC, you
must have SYSPARMS PPOSOCMD=PPOPROC specified and verify that
PPOLOG=YES is specified in your VTAM startup.

■ To receive specific messages, issue DEFMSG DELIVER=PPO commands either
in your PPOPROC, or before starting it.

■ PPO message delivery to PPOPROC begins after the first &PPOREAD has
been issued.

Note: For more information about the SYSPARMS command, see the Reference
Guide. For more information about the PPO, STATUS, and DEFMSG commands,
see the online help.

Intercept OCS Messages (MSGPROC Procedures)

Your product can intercept all messages being sent to an OCS screen or
background environment.

This facility is supported by a procedure known as MSGPROC. Before this facility
can be utilized, a MSGPROC must be defined for each user ID requiring message
interception.

To do this, update the user ID definitions (using UAMS, or an external security
system) to define the name of the MSGPROC to be invoked.

Intercept OCS Messages (MSGPROC Procedures)

232 Network Control Language Programming Guide

The name provided in the MSGPROC field of the user ID definition is the name
of a procedure in the procedure library. Different user IDs can have different
MSGPROCs, while some user IDs might have no MSGPROC at all. You can
change or flush the MSGPROC value with the PROFILE command.

Note: MSGPROC is supported for OCS mode and INMC users with ROF sessions,
including background user IDs and console user IDs. However, you cannot use
MSGPROC in dependent processing environments associated with &INTCMD
use.

MSGPROC Statements

Special processing verbs are provided for MSGPROC use:

■ &MSGREAD makes the next message available.

■ &MSGCONT returns a message for normal delivery.

■ &MSGDEL deletes a message.

■ &MSGREPL replaces the text of a message.

Note: For more information about these verbs, see the Network Control
Language Reference Guide.

Multiple occurrences of any of these verbs simplifies the processing of group
messages, as the procedure can be structured for the type of messages being
processed.

In addition, MSGPROC can use the &INTCMD processing facilities to perform
other functions while processing a message.

Note: An MSGPROC procedure receives all messages that appear on your OCS
window. The procedure can therefore be used for various purposes, for
example:

■ Acting on unsolicited messages received on MAI sessions

■ Reformatting VTAM messages

■ Recognizing events and prompting an operator to take appropriate action

Operators with suitable authority can change the name of their MSGPROC
procedure or flush it, using the PROFILE command.

Intercept OCS Messages (MSGPROC Procedures)

Chapter 9: System Level Procedures 233

Design MSGPROC Procedures

You write an MSGPROC procedure as a closed loop. When invoked, it processes
until the first &MSGREAD statement is detected again and then suspends
processing until a message arrives for your terminal.

As each message arrives, the procedure logic branches to an appropriate
processing point for that message, or issue an &MSGCONT if the message is of
no interest. After processing the message or a group of associated messages,
the procedure then returns to the initial &MSGREAD where processing is
suspended once again.

If the logic of the MSGPROC procedure allows it to terminate, an error message
is issued and normal message processing resumes.

MSGPROC can also use the START command to create worker processes that
process events or message groups asynchronously. This lets MSGPROC continue
monitoring the flow of OCS window messages.

Messages from MSGPROC

If a user ID is defined with a MSGPROC, all messages destined for that user's
OCS window are directed to the MSGPROC for processing. Messages that come
from within the MSGPROC itself (such as those from &WRITE statements, or
comments written to the user's terminal), are not passed to the MSGPROC for
processing. This prevents recursive looping.

User ID Considerations for System Level Procedures

234 Network Control Language Programming Guide

Test MSGPROC

MSGPROC is invoked when you enter OCS mode. MSGPROC processes until the
first &MSGREAD statement is encountered. The procedure remains active until
terminated by an error (in which case normal message delivery resumes), or
until you exit OCS mode. Exiting OCS mode flushes the MSGPROC procedure.

Subsequent reentry to OCS mode invokes the latest copy of the procedure,
unless the procedure has been preloaded. If the procedure has been preloaded,
you first unload it using the UNLOAD command and LOAD the replacement
procedure.

The system is distributed with an MSGPROC example. Before you write your
own MSGPROCs, review $MSGPROC in the distribution library.

Define a temporary user ID where $MSGPROC is defined as the required
MSGPROC, then log on to this user ID and enter OCS mode to invoke the
MSGPROC.

$MSGPROC intercepts VTAM display commands and provides a single-line
summary. The procedure extracts information from various lines generated by
the VTAM command, analyzes them within the procedure, and generates a
response to the operator. You can tailor the example for your VTAM level.

User ID Considerations for System Level Procedures

All NCL processes execute on behalf of an authorized user ID. Private users who
log on and execute NCL processes, execute their NCL processes within their own
NCL processing regions.

System level procedures also require an NCL processing region for execution.
The principal procedures, LOGPROC and PPOPROC execute under special
internal user ID environments. LOGPROC executes under a special user ID, and
PPOPROC executes under a special PPO interface user ID.

The internal user IDs, which provide the execution environments for these
system level processes, are regarded as standard users. They are logged on in
the standard way and can have UAMS (or security exit) user ID definitions. If you
want to profile these internal user IDs in special ways, you can define them in
the same way as real users.

Chapter 10: Implementing User Programs 235

Chapter 10: Implementing User Programs

This section contains the following topics:

About the SUBSYS Facility (see page 235)
Send Parameter Lists to the Subsystem (see page 237)
Control Subsystems (see page 237)
Write a SUBSYS Program (see page 240)
SUBSYS Callback API (see page 243)

About the SUBSYS Facility

The SUBSYS facility lets you call user programs and have them run in a separate
subtask. This lets you:

■ Enhance the &CALL NCL verb by attaching a long-running subtask to handle
&CALL requests

■ Preserve the state of system resources, such as open files, external
database interfaces, and so on

■ Reduce the system overheads associated with each call

The SUBSYS facility is supported by the SUBSYS command, and extensions to the
&CALL NCL verb.

You should not confuse the subsystems provided by the SUBSYS facility with the
z/OS Subsystem Interface, or other z/OS subsystems. These are purely internal
subsystems managed by your product.

Use &CALL Without SUBSYS

If you are using &CALL without the SUBSYS facility, the following disadvantages
are encountered:

■ An z/OS ATTACH is issued for each call. This means that the called program
cannot easily remember things across calls.

■ Significant CPU time is expended in ATTACH processing

■ Continual opening and closing of files by z/OS

■ Use of either &LOCK (in NCL) or ENQ/DEQ (in assembler) to serialize

About the SUBSYS Facility

236 Network Control Language Programming Guide

Use &CALL With SUBSYS

To counter the disadvantages of using &CALL, you can use the SUBSYS facility.
This provides the following:

■ The target program is only attached once and all work is queued to it

■ The target program can easily keep files open

■ The target program is informed of NCL process termination, and of
subsystem start and stop. It is also notified of system shutdown.

The SUBSYS program is attached once, as a long-running task so that you can
open files, get storage, and so on. These resources are not released when you
return.

Extensions to &CALL

The SUBSYS command lets you nominate a subsystem as a complete &CALL
replacement. This means that any existing NCL procedures that have used
&CALL to call a program, for example, X, can be automatically redirected to a
SUBSYS defined as X. This command is one way to gain immediate
improvements in performance for some programs.

Note: For more information about the &CALL verb, see the Network Control
Language Reference Guide.

Uses of SUBSYS

Some examples of the use of the SUBSYS facility are:

■ Access to foreign DBMS

■ The ability to read and write non-supported file formats from NCL

■ High-performance reworks of existing &CALL programs

■ Interfaces to some IBM utilities such as IDCAMS. One example is UTIL0035.

Send Parameter Lists to the Subsystem

Chapter 10: Implementing User Programs 237

Send Parameter Lists to the Subsystem

When a call is made to an NCL procedure using the SUBSYS facility, parameters
are passed to that procedure. These parameters are passed in a list which can
be in an old or a new format.

Note: For more information about the old parameter format, see the
description of &CALL in the Network Control Language Reference Guide.

The new parameter list format is available for direct call-attach and is specified
in the PARMLIST=NEW operand of the SUBSYS DEFINE command. The new
format provides the following:

■ Called programs can determine whether or not they have been called with
an old or new format list.

■ Provides more information about the environment. There are sections that
describe the current product region, USER, and NCL processes.

■ Additional NCL process termination, initialization, and shutdown calls.

■ NCL process correlators which allow you to be independent of the shared
NCL process correlator by writing reentrant SUBSYS code.

■ Callback application program interface (API) entry point that your program
can use to send messages back to the region.

The PARMLIST format is described in the distributed macro, $NMNCPL.

Note: The new format PARMLIST is compatible with high-level languages that
use standard IBM linkage conventions.

Control Subsystems

In order to control your subsystems you need to be able to perform various
actions on them. Each subsystem can be:

■ Defined

■ Started

■ Stopped

■ Deleted

■ Reloaded

■ Have its status displayed

Control Subsystems

238 Network Control Language Programming Guide

Define a Subsystem

To define a subsystem to your product, use the SUBSYS DEFINE command.
When this command is issued, the nominated subsystem is defined and the
indicated program is loaded into storage. By default, the subsystem is also
started. To prevent a subsystem being started when being defined, specify the
NOSTART parameter.

For more information about the SUBSYS DEFINE command, see the Online Help.

Start a Subsystem

A subsystem must be started before it can accept work. To start a subsystem,
use the SUBSYS START command. This command is used to start a defined or
inactive subsystem. A subsystem can also be automatically started when it is
defined.

When a subsystem is started, the following processing occurs:

■ A small part of your product is attached

■ An initialization of the attached product code occurs

■ If the subsystem has PARMLIST=NEW in effect, an initialization call is made
to the subsystem code [NCPFFUNC = NCPFFSIN (8)].

The subsystem is now allowed to accept calls (&CALL statements).

Stop a Subsystem

A subsystem can be stopped. This allows it to stay defined, but calls are no
longer permitted. To stop a subsystem, use the SUBSYS STOP command. When
the SUBSYS STOP command is entered, the following occurs:

■ If the subsystem is defined with PARMLIST=NEW, a stop call [NCPFFUNC =
NCPFFSTM (12)] is made to the program. This allows the program to clean
up any important resources.

■ The subsystem is detached

■ Any pending &CALL requests are rejected. No further &CALL requests are
permitted.

A stopped subsystem can be restarted by the SUBSYS START command.

Control Subsystems

Chapter 10: Implementing User Programs 239

Force a Subsystem to Stop

Sometimes a subsystem hangs in the user code. This could be caused by a loop,
or an unsatisfied WAIT. Regardless of the reason, all NCL processes waiting on a
call may wait indefinitely. This is especially likely while developing subsystem
code. To find out whether the subsystem has hung, use the SHOW SUBSYS
command.

You can stop a hung subsystem with the SUBSYS FORCE command. The
subsystem is force-detached, cleaned up and then assumes the STOP status.

Delete a Subsystem

A subsystem definition can be deleted by using the SUBSYS DELETE command.
You must stop the subsystem before it can be deleted. Any following requests
to this subsystem are rejected.

Reload the Program

If, while developing a subsystem, a new version of the program is required, then
the SUBSYS RELOAD command can be used, as an alternative to
STOP/DELETE/DEFINE.

The indicated subsystem must be stopped. The program is deleted (provided
that it has no other users), and a new copy is requested. The subsystem can
then be restarted by using the SUBSYS START command.

Note: If the program has other users, the delete does not work, and the reload
obtains the same version as before.

Display the Status of a Subsystem

To display the status of all defined subsystems, use the SHOW SUBSYS
command.

Write a SUBSYS Program

240 Network Control Language Programming Guide

Write a SUBSYS Program

A SUBSYS program has to be able to handle the following events:

■ An NCL process that called the subsystem terminates.

■ An initialization call is made.

■ A SUBSYS STOP command is executed.

■ Your product starts to shut down.

■ A subsystem cleanup is performed.

To make it easy to track data associated with a given environment (such as an
NCL procedure), various correlator words are provided from which you can
anchor control block structures.

The following sections describe how to write a SUBSYS program using the new
parameter format list.

Note: For more information about how to write a program using the old
parameter list, see the &CALL description in the Network Control Language
Reference Guide.

Subsystem Program Considerations

When writing a subsystem program, the following should be considered:

■ Use the new format parameter list. Remember that you can validate the
format by checking that the value pointed to by R1 on entry is equal to R1.

C R1,0(,R1)

BE NEWFMT

B OLDFMT

The following facilities are only available if the new parameter list format is
used:

– An NCL process cleanup call

– System initialization calls

– System shutdown calls

– Private correlator calls

– Callback API

Write a SUBSYS Program

Chapter 10: Implementing User Programs 241

■ Check whether your program has been called as a subsystem rather than an
&CALL attach. If an asterisk is found in the subsystem name field in the
(new) parameter list, then it is an &CALL attach, not a SUBSYS call.

■ A subsystem gets a private correlator word for each unique NCL process
that calls it. This correlator word can be altered (it starts as 0) and is
remembered and returned on the next call for that NCL process. It is an
ideal place to anchor process-related control blocks. The shared correlator is
shared with all subsystems or other &CALLed programs for this NCL process.

■ Any NCL process that calls a subsystem using the new parameter list causes
a cleanup call to be provided to that subsystem. This call is made regardless
of the type of NCL process termination (normal, abnormal, and so on). The
private correlator is provided, and this allows the subsystem to clean up any
control blocks as required. If an NCL process is flushed while on a SUBSYS
call, the subsystem is not notified of the fact until later. It need not worry
about the process disappearing while actually processing the current call.

■ A SUBSYS DEFINE (without NOSTART) or SUBSYS START command sends an
initialization call to the subsystem. This allows the subsystem to initialize its
environment. It should anchor any control blocks in the SUBSYS correlator in
the new format parameter list.

■ A SUBSYS STOP sends a termination call to the subsystem program. This
allows the subsystem to clean up any control blocks, and so on, prior to
being detached.

■ If your product is shut down, a system shutdown call is sent to the
subsystem. It must quickly clean up its environment. It is force-detached
several seconds later regardless of whether it is finished or not.

■ Only as many parameters as were passed can be returned to a caller. This is
the same as the previous &CALL. Each parameter is limited to 256
characters of data. Binary values are preserved both on input and on return.
Be sure to set the lengths correctly.

■ All calls to a specific subsystem are queued and processed in turn. This
means that, if the subsystem code takes a long time to process a call (for
example, issuing a WAIT on VTAM input), all pending calls are also delayed.
This is a restriction of the current implementation.

■ This can be avoided by queuing requests to the subsystem to a manager
process (using the INTQ command and a globally known NCLID). This
manager process talks to the subsystem on behalf of all users of the
subsystem. Then the subsystem code can wait on many events and return
the first event to the manager, which can then pass it back to the requestor.

■ If the subsystem ABENDs, the subsystem will stop. It can be restarted.

Write a SUBSYS Program

242 Network Control Language Programming Guide

■ SUBSYS FORCE is useful when a subsystem hangs.

■ The subsystem load module must reside in a library accessible to your
product region. Typically this is the STEPLIB. Remember that your product
libraries must be authorized. This means that any libraries in this STEPLIB
concatenation must also be authorized. This is a security consideration.

■ 31-bit mode programs are supported. All supplied control blocks (for
example PARMLIST) are always below the 16mb line.

■ If performing multiple functions, use the first parameter passed, as a
function indicator:

&CALL SUBSYS=SUB1 OPEN

&CALL SUBSYS=SUB1 READ

&CALL SUBSYS=SUB1 READ

&CALL SUBSYS=SUB1 CLOSE ...

Write a Subsystem Program in High-level Languages

The new format parameter list makes it possible to write both one-time
programs using the &CALL command and subsystems in high-level languages,
for example COBOL and PL/1.

There are several considerations for high-level languages:

■ Always use a new format parameter list. The old format is incompatible with
high-level languages.

■ In COBOL, define the input parameters in the LINKAGE SECTION. COBOL
cannot easily handle a variable number of parameters, but as long as the
extra parameters on a specific call are not referred to (that is, the count is
obeyed) then no problems should arise. Another technique may be used to
access a variable number of parameters. The individual parameters are
actually in contiguous storage. Thus, instead of individual parameters, just
define the first one, as an array:

LINKAGE SECTION.

... other parms

01 NCPC.

03 NCPCCNTPIC S9(9) COMP.

01 PARMS OCCURS 1. ... actual count is NCPCCNT

03 LENPIC S9(9) COMP.

03 VALPIC X(256).

PROCEDURE DIVISION USING PLIST NCPC PARMS.

SUBSYS Callback API

Chapter 10: Implementing User Programs 243

■ Dope vectors are not set up for PL/1. Because of this, define all individual
input parameters as FIXED BIN(31) and BASE a structure over them:

DCL NCPN_ FIXED BIN(31),

 1 NCPNBASED ADDR(NCPN_F),

 3 NCPNPROC CHAR(8),

The suggestion for COBOL regarding variable parameter counts applies to
PL/1 also. Since the actual number of parameters is not part of the
pseudo-array, a REFER structure cannot be used. Use PARMS(1) on the DCL.

Do not compile with SUBSCRIPTRANGE in effect.

■ Use the RETURN-CODE variable in COBOL to set the return code. Use CALL
PLIRETC (code) IN PL/1.

■ Use GOBACK rather than STOP RUN in COBOL to return.

■ Both COBOL and PL/1 have large overheads for establishing the run-time
environment. When repeated calls are necessary, these overheads can be
excessive. Consult the relevant programmer's guide for details on callable
interfaces that can perform a one-time build of this environment.

SUBSYS Callback API

If the subsystem is using the new format parameter list, then a callback API is
available. You can call this API from a SUBSYS program, including any subtasks of
that program, to perform several services. (For an example of the use of this API
in a subtask, see the source of the UTIL0035 program.)

The address of the API entry point is in the NCPSAPIE field, as defined by the
$NMNCPL macro. The address in this field is different for each active subsystem
and does not change during the life of that subsystem. You can save it
elsewhere (for example, for use by subtasks), but must not share it across
subsystems or across subsystem restarts.

After loading the entry point into Register 15 (R15), you can call the API by a
standard BALR R14,R15 instruction. The caller can be in any AMODE, but all
addresses passed in the parameter lists must be valid 31-bit addresses.

The API expects a standard format parameter list. Depending on the request,
the list contains three or four parameters.

SUBSYS Callback API

244 Network Control Language Programming Guide

Register 1 must point to a list of addresses, each address in turn pointing to a
parameter. The end-of-list bit is not required and not checked.

The first parameter is a fullword binary function code: 0, 4, and 8, which are
described in the following sections.

Function Code 0—Queue a Message to the INTCMD Environment of an NCL
Process

Function Code 0 queues a message to the INTCMD environment (response
queue) of a nominated NCL process. Three additional parameters follow the
function code:

parameter_2

Specifies the length of the message in fullword binary format.

Limits: 1 to 256

parameter_3

Specifies the message to queue.

parameter_4

Specifies the NCL ID of the NCL process in fullword binary format.

Limits: 1 to 99999

The process must have issued a request to the subsystem; otherwise, the
message is discarded.

Important! If the message is discarded, the caller does not receive any
indication.

Function Code 4—Send a Message to an NCL Process

Function Code 2 sends a message to the standard message environment of a
nominated NCL process. Three additional parameters follow the function code:

parameter_2

Specifies the length of the message in fullword binary format.

Limits: 1 to 256

SUBSYS Callback API

Chapter 10: Implementing User Programs 245

parameter_3

Specifies the message to send.

parameter_4

Specifies the NCL ID of the NCL process in fullword binary format.

Limits: 1 to 99999

The process must have issued a request to the subsystem; otherwise, the
message is discarded.

Important! If the message is discarded, the caller does not receive any
indication.

Function Code 8—Send a Message to MONITOR Receivers

Function Code 8 sends a message to all MONITOR receivers in the region. Two
additional parameters follow the function code:

parameter_2

Specifies the length of the message in fullword binary format.

Limits: 1 to 256.

parameter_3

Specifies the message to send.

Return Codes

Following a call to the API, R15 is set to one of the following values:

0

Indicates that the function works.

4

Indicates that the specified length of the message is invalid.

8

Indicates that the specified NCL ID is invalid.

24

Indicates that the specified function code is not supported.

SUBSYS Callback API

246 Network Control Language Programming Guide

28

Indicates storage shortage.

32

Indicates that the caller is not executing as a subsystem.

Example: Send a Message

This example shows how a message can be sent to the current caller's
environment. (It is assumed that an &CALL request is being processed by the
subsystem code, and that addressability to the NCPS and NCPN areas has been
set up.)

 MVC CBFC,=F'4' FUNC CODE

 MVC CBML,=A(L'MSG1) MSG LENGTH

 L R15,NCPSAPIE GET API EPA

 CALL (15), CALL API *

 (CBFC,CBML,MSG1,NCPSNCLI), WITH THESE PARMS *

 MF=(E,CWA) PLIST BUILT HERE

 ...

MSG1 DC C'HELLO FROM A SUBSYSTEM'

 ...

CWA DS 4F PARMLIST BUILT HERE

CBFC DS F FUNCTION CODE

CBML DS F MESSAGE LENGTH

Chapter 11: Synchronizing Access to Resources 247

Chapter 11: Synchronizing Access to
Resources

This section contains the following topics:

Use NCL to Synchronize Access to Resources (see page 247)
Resources and Resource Locks (see page 248)
Resource Name Hierarchy (see page 250)
Resource Naming Conventions (see page 251)
&LOCK Verb (see page 251)
Resources as Semaphores (see page 254)

Use NCL to Synchronize Access to Resources

NCL applications involving multiple users often need a mechanism for
controlling access to the same data or resource, by different users or processes.
This control is particularly important in NCL systems that use UDBs to hold
application-related data that can be updated by some users, and concurrently
read by others.

NCL provides this mechanism through the use of locks which allow or deny
access to resources. The same mechanism is also used to synchronize activity
between separate processes by providing a semaphore capability.

Resources and Resource Locks

248 Network Control Language Programming Guide

Resources and Resource Locks

A resource, as used here, is not a real entity such as a file or a variable. It is a
name, consisting of a primary name and optionally a minor name, to which NCL
procedures refer.

The purpose of the lock mechanism is to provide assurance that a specific
operation can be performed, at a particular point within an NCL procedure's
logic, without interference or damage by other NCL processes that might be
attempting to use the same data at the same time.

A common example is the case where a process needs to update a record on a
UDB. The process reads the target record, changes it and writes it back to the
file, but it also needs to guarantee that no other process updates the same
record at the same time. To achieve this guarantee, the process first obtains
exclusive access to a resource that symbolizes the record update process.

Once it has obtained this exclusive access, the procedure is free to perform as
much work on the target record as it needs, knowing that no other procedure
can access the same record in the meantime because no other procedure would
be able to gain access to the resource lock.

It is important to remember that it is not the data itself that is protected by the
lock mechanism, only the resource. If controlled access to an item of data is
required then all procedures that change that data must gain access to the lock
before updating the data.

Resources and Resource Locks

Chapter 11: Synchronizing Access to Resources 249

Resource Groups

To explain the concept of a resource group, take the previous example of a file
record, in which a procedure uses resource locking to guarantee exclusive
access to a file record for the purpose of updating it, without having to worry
about any other process changing the record at the same time. In this example,
the resource could be a name that represents the entire file; in other words,
you could organize your procedure to have exclusive read/write access to a
whole database.

Alternatively, and probably in preference, you would like other processes to
continue to have access to the file as a whole, as long as they could not access
the specific record that your process is updating. To achieve this, you would
assign a resource primary name to represent the file (UDB), and then decide on
a naming convention that allows individual records within the file to be
identified by a minor name.

For example, if you have a UDB containing NCP configuration data keyed by line
name, you might assign a primary name of CONFIG to represent the UDB itself
and use the line name as a minor name to represent each line record as a
resource within the UDB. To retrieve information about a line, your procedure
first obtains exclusive access to the appropriate line record resource by
requesting exclusive control of the appropriate primary/minor name resource
lock.

In this example, your procedure would execute the following &LOCK statement
to gain exclusive permission to process the record on the UDB that contains
information about line 23:

&LOCK TYPE=EXCL PNAME=CONFIG MNAME=LINE23

You could code the following statement if your naming convention for resource
locks uses XYZ to identify the record on the database that describes the
configuration of line 23:

&LOCK TYPE=EXCL PNAME=CONFIG MNAME=XYZ

In this example, the primary name (CONFIG) represents a resource group. The
combination of the primary name and a minor name identifies a resource within
the group.

Resource Name Hierarchy

250 Network Control Language Programming Guide

Primary Names

The primary name is the part of the resource name that uniquely identifies the
resource group. It is a 1- to 16-character string of your choice. Logically, the
primary name represents the root of a (potential) two-level hierarchy, below
which one or more dependent minor names can exist.

Minor Names

The minor name of a resource, if required, is a 1- to 256-character string, which
qualifies the resource's primary name to identify a specific resource within a
resource group. For example, the primary name CONFIG represents both a
resource group and a specific resource. The resources CONFIG.ABC and
CONFIG.XYZ represent specific resources within the CONFIG resource group.

Resource Name Hierarchy
Specific resource names, that is, those that are explicitly defined by primary and
minor name, are peers within their resource group.

Any process that obtains exclusive control of the resource CONFIG prevents any
other process in the system from gaining access to any other resource below
CONFIG in the hierarchy. Therefore no process can gain access to the
CONFIG.XYZ resource, until the first process releases its exclusive control of the
CONFIG resource lock.

Alternatively, a process that requests exclusive control of the CONFIG.ABC
resource does not prevent any other process from accessing the CONFIG.XYZ
resource.

Resource Naming Conventions

Chapter 11: Synchronizing Access to Resources 251

Resource Naming Conventions

Since resources are only names, not real entities, the NCL procedures that use
the locking mechanism to control and synchronize their access to different
resources must agree on the resource names that they will use. They must also
agree that a resource name means the same thing to all procedures. Once the
resource names have been agreed, all procedures must use the &LOCK verb to
obtain the resource lock to access resources, otherwise protection cannot be
guaranteed.

It is very important that you define a naming convention for resource
identification. Ideally your naming convention should apply to all product
regions within your organization. Alternatively, naming conventions can apply
within a given system or within a specific NCL system.

&LOCK Verb

The &LOCK verb lets you obtain and release resource locks.

■ &LOCK operates systemwide; it is not restricted to your NCL region alone.

■ &LOCK is used to designate a particular resource lock that the procedure
wants to control, and specifies the type of control that is required.

If a process has exclusive control of a resource lock, all other processes in the
system are prevented from gaining access to the resource at the same time.
Alternatively, the process can gain shared access to the resource lock, which
prevents any other procedure from being granted exclusive access. If necessary,
you can alter the status of the lock from shared to exclusive, or from exclusive
to shared, during processing.

A procedure can also use &LOCK to test whether any other procedure is holding
a lock that it wants to access.

Note: For more information about the &LOCK verb, see the Network Control
Language Reference Guide.

&LOCK Verb

252 Network Control Language Programming Guide

Wait for Access to a Resource

If a procedure issues &LOCK to request access to a resource lock, but the
required access cannot be granted immediately, the WAIT operand specifies
whether the system will return control to the procedure immediately, or wait
for the resource to become available.

If you specify WAIT=YES, your procedure will be suspended indefinitely until
access to the required resource can be obtained. You should avoid this, unless
you are certain that a deadlock condition with another process in the system
will not result.

Rather than code WAIT=YES, CA recommends that you use the WAIT=nnnn
option. This instructs the system to wait for the required resource for a certain
number of seconds (as specified by the nnnn variable), rather than waiting
indefinitely. If the lock is still not available after that time, the procedure
resumes processing. This stops deadlock conditions occurring.

Alter the Status of a Resource Lock

If required, you can alter the resource lock status of a process during processing
by using the ALTER=YES operand on the &LOCK verb. Altering the lock status
from exclusive to shared is always possible, however there are some restrictions
when altering the lock status from shared to exclusive.

Alter the Status from EXCL to SHR

During processing of the &LOCK request, any other lock requests that are
waiting for shared access to the resource become valid for shared ownership.
They are granted shared access to the resource immediately, causing the
requesting procedures to resume execution.

Alter the Status from SHR to EXCL

The following conditions must be satisfied before a request to alter a resource
lock status from shared to exclusive will be successful:

■ No other procedures can have shared ownership of the resource

■ If the resource is the primary resource, there must be no other minor
resources (with shared or exclusive status) with the same primary name

&LOCK Verb

Chapter 11: Synchronizing Access to Resources 253

If any other shared requests for the lock arrive before the status is altered to
exclusive, these new shared requests are given precedence over the change to
exclusive, and are granted shared ownership of the lock

If the request is successful the procedure owns the lock exclusively.

WAIT Operand

As with normal shared and exclusive requests, the WAIT operand plays an
important part in determining the success or failure of a request to alter the
lock status. However, the waiting period is only significant for a request to
change from shared to exclusive, as the request to change from exclusive to
shared is always satisfied immediately.

When WAIT=NO is specified, the request fails unless it is satisfied immediately.

When WAIT=nnnn or WAIT=YES is specified, the requesting process can wait for
the specified period of time for the change to be successful (this will happen
when another process releases its lock).

If the status type on the &LOCK ALTER request is the same as the current status,
the request is treated as a request to alter the lock text only-for example, the
process holds a shared lock then issues a shared lock request with the
ALTER=YES operand. This request is always successful.

Associate Text with a Resource Lock

To assist recognition or provide information to other processes that want to
interrogate the status of a lock, the &LOCK verb can specify text associated with
your procedure's ownership of the lock. This text appears in the SHOW
NCLLOCKS command display, which is used to display the locks held by the
different processes in the system. The text is also made available to a procedure
issuing an &LOCK statement with the TYPE=TEST option.

Note: For more information about the SHOW NCLLOCKS command and its use,
see the online help.

Resources as Semaphores

254 Network Control Language Programming Guide

Resources as Semaphores

Using &LOCK to synchronize the use of a resource between competing
processes solves the problem of access to real resources. The same technique
can be employed to signal between co-operating processes, in particular with
the use of the TEST facility of &LOCK. In this case, the resource is not a real
resource but a signal or semaphore.

Semaphores are a useful mechanism for synchronizing the processing of related
procedures. Take an example of Procedure A that needs to suspend processing
until Procedure B reaches a particular point in its processing.

Procedure A's logic could look like this:

.

. -* process

.

&LOCK WAIT=YES TYPE=TEST PNAME=XYZ

At this point, Procedure A is suspended until another &LOCK request is made for
the resource XYZ.

Procedure B in the meantime continues processing until it completes the
function which it knows procedure A has to wait for. At this point, procedure B
issues the same &LOCK request for the resource XYZ:

&LOCK WAIT=YES TYPE=TEST PNAME=XYZ

Both the &LOCK verbs complete with &RETCODE = 8, indicating that both
procedures have reached the synchronization point. If Procedure B reaches the
point first, its &LOCK would suspend it until Procedure A issued its &LOCK
statement.

Chapter 12: NCL Debug Facility 255

Chapter 12: NCL Debug Facility

This section contains the following topics:

Overview (see page 255)
Security (see page 256)
NCL Debug Facilities (see page 257)
Control the Execution of NCL Processes (see page 259)

Overview

The NCL Debug facility is a powerful tool to assist in the debugging of NCL
procedures.

The DEBUG command has various operands which provide the NCL developer
with the ability to establish a debug session. This debug session can be targeted
at one or more debug scopes. A debug scope can be any of the following:

■ An NCL process

■ All the processes within a particular user's window

■ All the processes within a particular user's logon region

■ All the processes for a particular user ID (that is, all regions for that user ID)

You can have one or more debug sessions active simultaneously, each being
initiated from a different environment.

A debug session is associated with a particular region that is referred to as the
debugger. This region is the only region from which debug commands are
accepted for the session. Any command environment can be a debugger. These
environments include OCS and any &INTCMD environments.

An NCL process that falls into the scope of a debugger is associated with that
debugger's environment and is referred to as a debugged NCL process. Only one
debugger can debug an NCL process at a time.

Security

256 Network Control Language Programming Guide

After a debug session has been started, you can set break points in any
procedure of any NCL process that has been attached to the debug session. The
breakpoints can be set at particular points within the executed code, against the
action of updating a variable, or against the execution of a nominated verb. The
debugger can view or alter the data of the target NCL process. These
breakpoints are external to the source and allow you to debug a process
without having to modify the source code.

You can control execution of an NCL process by setting various breakpoints
throughout the process. The DEBUG commands allow you to halt the execution
of a process, resume execution (after a halt or breakpoint has been reached) or
to step through a fixed number of process statements. You can also suspend the
debug session and reestablish it at a later time. Any breakpoints or suspended
processes is preserved in their current state.

The SHOW DEBUG command lets you see all your current debug sessions and
their associated scopes and, optionally, the debug sessions of other users.

Note: For more information about the DEBUG and SHOW DEBUG commands,
see the online help.

Security

A set of security constraints is incorporated with this flexible debugging
interface, to protect against intentional access to user's NCL processes that are
running.

■ Command authority level can be used to stop a user from debugging the
procedures of another user.

■ NCL Debug is a feature of your product and therefore can be excluded from
a product region using an EXC= JCL parameter.

Note: For more information about using the EXC= parameter, see the
Reference Guide.

■ You can replace the DEBUG command by an NCL procedure using the
SYSPARMS CMDREPL operand.

Note: For more information, see the Reference Guide.

■ The DEBUG DISPLAY command can be used to display the contents of
variables but it does not display the &USERPW variable.

NCL Debug Facilities

Chapter 12: NCL Debug Facility 257

NCL Debug Facilities

NCL Debug provides the following facilities:

■ Allows observation of the execution of an NCL procedure from an external
source, that is, another environment, another user region, window, or NCL
environment.

■ Eliminates the need for code changes to debug a procedure. For example,
there is no need to add &CONTROL or &WRITE statements.

■ Provides comprehensive control over the NCL procedure as it is being
executed, supporting statement stepping, alteration of variable contents
and attributes, and so on.

■ Allows specification of criteria for debugging, before the target NCL begins
execution.

NCL Debug Facility

The NCL Debug facility is made up of a set of commands that allow you to do the
following:

■ Start and stop an NCL debug session

■ Control the execution of NCL processes

■ Display and modify the contents of NCL variables, independent of the
nesting level of the process

■ List the procedure and subroutine nesting levels

■ Display the source code that is being executed (not the source currently on
disk, that is, without comments or indentations)

■ Receive NCL trace output at another region, thus being able to view the
trace output concurrently as the debugged process executes

NCL Debug Facilities

258 Network Control Language Programming Guide

Start and Stop an NCL Debug Session

An NCL debug session is started in an environment by issuing the first DEBUG
START command. The environment and scope of the session are defined using
the operands of the DEBUG START command. Subsequent DEBUG START
commands add additional scopes to the debug environment already
established.

When the DEBUG START is processed, any NCL processes that fall within the
specified scope, and which are not already debugged, will be attached to the
debugger's session. If an NCL process starts, and its environment is being
debugged, or it falls within the scope of a debug session, it will be attached to
that debug session.

Once an environment has established a debug session, other debug commands
can be issued to control the NCL processes that have been attached. The
commands to manipulate these processes must be issued from the same
environment that issued the DEBUG START. The process has no awareness of
being debugged.

Once debugging is complete, the debug session can be terminated using the
DEBUG STOP command. There are three options for the DEBUG STOP command
that affect the actual processes that have been attached to the debugger.

■ The CONTINUE option tells debug to remove all breakpoints from the
processes and resume any that are suspended, leaving them to continue as
if no debugging had taken place.

■ The FLUSH option causes all attached processes to be flushed.

■ The SUSPEND option leaves the debug environment intact and disconnects
it from the debugger's environment (the debug session is suspended).

The CONTINUE and FLUSH options both result in the debug session being
deleted. All breakpoints and scopes are cleared and any new processes that
start, and fall within the scope, will not be attached.

The SUSPEND option leaves the debug environment intact. Breakpoints and
scopes remain in effect. If a process starts within a scope, that process will be
attached to the debug environment and any breakpoints that are pertinent will
be applied. The debug session will be flagged as suspended, and a debug ID will
be assigned to it. When the debug session needs to be reconnected, a DEBUG
START command can be issued specifying the DEBUGID that was assigned to the
suspended debug session.

Control the Execution of NCL Processes

Chapter 12: NCL Debug Facility 259

A debug session can be reconnected to another environment of the same user
ID. Conversely, a session can be reconnected from another environment of the
same user ID. During the time that the session was suspended, new processes
can be attached from the debug session. If an attached process encounters a
breakpoint, it is suspended, and remains suspended until the debug session is
reconnected and a command issued to resume processing for the process. The
same applies for a process that was suspended at the time the debug session
was suspended.

The following sequence of commands shows how to establish and stop a debug
session:

DEBUG START WINDOW=2 -* debug any procedure in

 -* window 2

DEBUG START USER=NM1BSYS PROCEDURE=MYBPROC

 -* debug background procedure

 -* in BSYS region

-* other debug commands control the process in the two scopes

DEBUG STOP TYPE=FLUSH-* terminate the debug

 -* session and flush the

 -* procedures

Control the Execution of NCL Processes

Once a debug session has been established, the debugger can issue various
commands to control the execution of the processes that are subsequently
attached to the debug session. The commands that can be used have the effect
of either suspending a process, resuming the execution of a process, or both.

The following commands can be used to suspend an NCL process while it is
executing:

DEBUG HOLD

This command flags the process for immediate suspension, before the next
statement is executed.

DEBUG STEP

This command indicates to debug that the process is to be suspended after
the specified number of statements have been executed. The NEXT=
operand can be used to indicate how many statements of the process to
allow before the process is suspended.

Both commands have the effect of putting the NCL process into a wait state.
The SHOW NCL command indicates that the process has been suspended.

Control the Execution of NCL Processes

260 Network Control Language Programming Guide

Another way for a process to become suspended is indirectly, using the DEBUG
BREAKPOINT command. The DEBUG BREAKPOINT command defines a condition
that must be satisfied before the process is suspended. The following conditions
can be specified:

■ Statement

■ Verb

■ Variable

■ Procedure ENTRY

■ Procedure EXIT

Statement Breakpoints

A statement breakpoint can be used when the process is to be suspended if the
statement identified by the STMT= operand of the DEBUG BREAKPOINT
command is about to be executed. The statement is identified using the line
number found in columns 73 to 80 of the source, or a relative number if the
source is unnumbered.

Verb Breakpoints

A verb breakpoint can be used when the process is to be suspended if the
statement to be executed contains the verb identified by the VERB= operand of
the DEBUG BREAKPOINT command. The process is suspended immediately
before the verb is executed.

Variable Breakpoints

A variable breakpoint can be used when the process is to be suspended if a
variable, identified by the VARS= operand of the DEBUG BREAKPOINT
command, is updated. The process is suspended immediately after the
statement that caused the variable to be updated. Optionally, the command can
specify the DATA= operand to limit the breakpoint to updates of the variables
with a particular value.

Procedure ENTRY Breakpoints

A procedure ENTRY breakpoint can be used to suspend execution of a
procedure before the first statement of the procedure is executed.

Control the Execution of NCL Processes

Chapter 12: NCL Debug Facility 261

Procedure EXIT Breakpoints

A procedure EXIT breakpoint can be used to suspend execution of a procedure
after the last statement of the procedure has been executed. This includes any
normal termination statements which end the procedure (for example, &END or
&RETURN).

BREAKPOINT Command

Breakpoint definitions are associated with the debug session, and are applied to
procedures both when they are executed and when the breakpoint is defined.
Thus, breakpoints can be defined before any processes have been attached to
the debug session. When a process issues an EXEC command, the procedure
being executed has any relevant breakpoints applied.

Statement breakpoints require a privately loaded copy of the procedure. (This is
not necessary for the other types of breakpoint.) If the procedure is the target
of a statement breakpoint, the debugger will automatically request that a
procedure be privately loaded. Otherwise, normal procedure loading will remain
in effect, as controlled by the SYSPARMS NCLTEST or PROFILE command.

Once breakpoints have been established, any NCL process that satisfies the
conditions of a breakpoint is suspended. Breakpoints can be listed and cleared
using the DEBUG LIST BREAKPOINTS command and the DEBUG CLEAR
respectively. These commands are useful for controlling processes that have
already started.

If you need to stop a process on the first statement, use the DEBUG SET
NEWHOLD=YES profile command. Once set, it indicates to debug that all
processes that are attached to this debug session are to be immediately
suspended before the execution of the first statement.

When a process is suspended, other debug commands can be used to display
variables and the source code.

To resume the execution of the process after all the required information has
been displayed, use the following commands:

DEBUG RESUME

RESUME flags the process identified as ready to continue execution. The
process is made eligible for execution and the statement step counter, set
by the DEBUG STEP command, is reset.

Control the Execution of NCL Processes

262 Network Control Language Programming Guide

DEBUG STEP

The process is resumed in the same way as with the DEBUG RESUME
command and the statement step counter is set to the value specified on
the NEXT= operand. This will result in the process again being suspended
after the specified number of statements have executed.

Sample Debug Session

The following sequence of commands shows how to set breakpoints and control
the execution of a process:

-* The debug session has already been established

DEBUG SET NEWHOLD=YES -* Ensure the procedure is stopped

 -* on the first statement

DEBUG BREAKPOINT PROCEDURE=MYPROC STMT=1250000

 -* Suspend the procedure if it

 -* tries to execute statement 1250000

DEBUG BREAKPOINT PROCEDURE=MYPROC VERB=APPC

 -* Suspend background procedure on

 -* first APPC verb

DEBUG BREAKPOINT PROCEDURE=MYPROC VARS=WKTRANID DATA=CH22

 -* Suspend the procedure when it sets

 -* WKTRANID to the data that causes

 -* the error. The procedure MYPROC is

 -* started in window 2 and is

 -* immediately suspended

DEBUG STEP NEXT=10 -* Execute the first 10 statements

 -* Using the display commands the procedure is

 -* verified as to the current state of its variables

DEBUG RESUME -* Let process continue

 -* until first breakpoint

 -* The procedure is suspended on the APPC verb. Using the

 -* display commands, the procedure is verified as to the

 -* current state of its variables. They are set correctly

DEBUG LIST BREAKPOINTS -* List all current breakpoints

DEBUG CLEAR BREAKPOINT=2 -* Clear the breakpoint on the

 -* APPC verb

DEBUG RESUME -* Let the process continue until

 -* next breakpoint

 -* Process continues

Control the Execution of NCL Processes

Chapter 12: NCL Debug Facility 263

Display and Modify the Contents of NCL Variables

Once the procedure has reached a particular point in its processing and it has
been suspended, the DEBUG DISPLAY and DEBUG MODIFY commands can be
used to display and modify the contents of variables and MDOs. The entire
contents of the variable or MDO are displayed.

The modify command can be used to alter the attributes and contents of
variables and MDOs. Multiple variables can be altered by specifying the
operands of the modify in a similar fashion to using the &ASSIGN verb, however
the new value can only be specified using the DATA= operand.

List Procedure and Subroutine Nesting Levels

The DEBUG TRACE command is used to list all the procedures. Subroutine
nesting levels can also be obtained. The listing shows a general display of the
identified process, and then a detailed list of each procedure and the
subroutines that the procedure has entered.

Display the Executed Source

The DEBUG SOURCE command lets you list the statements of a procedure, as
they are stored in memory. The listing represents what the system will actually
execute, as opposed to what is currently on disk. This can be useful in verifying
that the procedure being debugged is the correct version.

Receive NCL Trace Output

When debugging full screen procedures, the output from the NCLTRACE facility
is not available for viewing until the process has completed, or the window has
been released by the process. This can be undesirable if the process has been
suspended after a panel has been sent and the process still owns the window.
The trace output will not be seen until the process releases ownership of the
window.

Using the DEBUG SET NCLTRACE=YES profile command, the trace output from a
process being debugged will be delivered to the debugger's environment.

Control the Execution of NCL Processes

264 Network Control Language Programming Guide

Example: Debug Session

The following sequence of commands shows how a debug session could
proceed:

DEBUG START WINDOW=2 -* Debug any procedures in

 -* window 2

DEBUG START USER=NM1BSYS PROCEDURE=MYPROC

 -* Debug background procedure

 -* MYPROC in BSYS region

DEBUG SET NEWHOLD=YES -* Ensure procedure is

 -* stopped on 1st statement

DEBUG BREAKPOINT PROCEDURE=MYPROC STMT=1250000

 -* Suspend the procedure if it

 -* tries to execute statement

 -* number 1250000

DEBUG BREAKPOINT PROCEDURE=MYPROC VERB=APPC

 -* Suspend background

 -* procedure on the first

 -* APPC verb

DEBUG BREAKPOINT PROCEDURE=MYPROC VARS=WKTRANID DATA=CH22

 -* Suspend the procedure when

 -* is sets WKTRANID to the

 -* data that causes the error

 -* The procedure MYPROC is started in window 2 and

 -* is immediately suspended

DEBUG STEP NEXT=10 -* Execute the first 10

 -* statements

DEBUG DISPLAY VARS=WK* GENERIC

 -* Verify that the work

 -* variables have been set

 -* correctly

DEBUG RESUME-* Let the process continue

 -* until the first breakpoint

 -* The procedure is suspended on the APPC verb

DEBUG DISPLAY VARS=WKTRANID -* The variable has the

 -* correct value - continue

DEBUG LIST BREAKPOINTS -* List the current

 -* breakpoints

DEBUG CLEAR BREAKPOINT=2 -* Clear the breakpoint on

 -* the APPC verb

DEBUG RESUME -* Let the process continue

 -* until the next breakpoint

 -* The procedure is suspended after updating WKTRANID

to

 -* CH22

DEBUG DISPLAY VARS=WK* GENERIC-* The display indicates that

 -* WKTRANPREF was incorrect

Control the Execution of NCL Processes

Chapter 12: NCL Debug Facility 265

DEBUG MODIFY VARS=WKTRANPREF DATA=ZCH

DEBUG MODIFY VARS=WKTRANID DATA=ZCH22

 -* Fix the variables

DEBUG CLEAR -* Clear all the breakpoints

DEBUG BREAKPOINT VARS=WKTRANPREF

 -* Stop the procedure when

 -* WKTRANPREF is updated

DEBUG RESUME -* Let the process continue

 -* until the next breakpoint

 -* The procedure is suspended after updating

WKTRANPREF

DEBUG TRACE -* Display the nesting

 -* levels.

 -* The display indicates that a subroutine was

 -* called at the wrong place

DEBUG MODIFY VARS=WKAPPPPLCTR DATA=2

 -* Change the loop counter to

 -* go through the process again

NCLTRACE ON ID=123-* Set tracing on

DEBUG SET NCLTRACE=YES-* Have the trace output sent

 -* here

DEBUG STEP NEXT=80-* Check the results

 -* After seeing the trace, it is clear that the

 -* variable WKHSGT is incorrectly set. The source is

amended.

 -* The bug had been found, so stop the debug

 -* session and flush the process.

DEBUG STOP TYPE=FLUSH -* Terminate the debug

 -* session and flush the

 -* procedures

Chapter 13: About Mapping Services 267

Chapter 13: About Mapping Services

This section contains the following topics:

What Is Mapping Services? (see page 267)
Mapping Services Processing (see page 268)
Mapping Concepts (see page 270)
Data Sources (see page 270)
Naming (see page 271)
Mapping Services, Mapping Support, and NCL Processing (see page 272)
Connection to Mapping Support (see page 273)
Sourcing Data (see page 273)
Manipulate and Extract Data (see page 274)
Use a Map in NCL Processing (see page 274)

What Is Mapping Services?

Mapping Services is a facility that provides NCL with enhanced capabilities for
manipulating data with various formats.

Early versions of NCL stored program data only as tokens (or NCL variables).
Mapping Services enhances NCL by introducing Mapped Data Objects (MDOs) as
an alternative to tokens and as a means of storing data. Data can easily be
transferred between MDOs and tokens. MDOs can also be written directly to
files and are supported by a number of specialized NCL functions such as
&ASSIGN and &APPC. MDOs can be used in many situations where tokens are
used.

Mapping Services Processing

268 Network Control Language Programming Guide

An MDO can contain any data that can be represented as a continuous string of
bytes in storage. The primary advantage of an MDO over NCL tokens is that
particular substructures within an MDO can be located and referenced by name
from NCL, using various rules which Mapping Services understands. Various
segments within these substructures can also be referenced. The substructures
which can be referenced within MDO data are generically known as
components.

To distinguish between various substructures which exist within a particular
MDO, a unique tag or key is assigned to each component. To determine what
names are to be associated with particular components within an MDO, and
their tag values, a map is used. A map enables the NCL language to associate
names with the various components which exist within a particular MDO. Thus a
map provides NCL with the ability to interpret the data contained within an
MDO.

Mapping Services Processing

Mapping Services extends the flexibility of NCL to include the manipulation of
data in any format. There are three key components involved in Mapping
Services processing:

■ MDOs

■ Maps

■ NCL procedures

Mapping Services provides a set of facilities that effectively mediates between
these three components and manages them. This allows components to exist as
separate entities, which interact during NCL processing to perform data
manipulation.

MDOs

Mapping Services can operate on any data item that can be represented as a
continuous string of bytes in storage. In addition, Mapping Services
understands certain rules which let it locate substructures within those data
items if they are composed of variable data structures.

To assist with uniformity of processing, Mapping Services treats the entire data
item as a structure called an MDO. An MDO has a name that is supplied by the
NCL procedure to reference that instance of data.

Mapping Services Processing

Chapter 13: About Mapping Services 269

Maps

Maps are defined using the Abstract Syntax Notation One (ASN.1) language.
They are then compiled and loaded for use in NCL.

Note: For more information about defining maps, see the Managed Object
Development Services Programmer and Administrator Guide.

NCL Procedures

NCL procedures are written to access data through one or more of the standard
NCL verbs. When data is provided by one of the verbs that support Mapping
Services, the procedure can request that it be treated as an MDO. It provides a
name for the MDO, and (optionally) the name of a map that can be used to
interpret the data.

Once the data has been internally accessed, and before the NCL verb completes,
Mapping Services makes a connection between the MDO and the designated
map. The NCL procedure can then reference data components within the MDO
using the symbolic names defined in the map.

Example: NCL Procedure

The following example shows how the three components interact in NCL.

&ASSIGN MDO=file1rec MAP=file1map

 -* the map called file1map is attached

 -* to the MDO called file1rec.

 -* This statement indicates to Mapping

 -* Services that this map is to be used

 -* to interpret any data in the MDO.

&FILE OPEN ID=FILE1 FORMAT=MAPPED MAP=file1map

 -* Open file in mapped processing mode.

&FILE GET ID=FILE1 KEY='00000000' MDO=file1rec

 -* Read a record from the

 -* file into the MDO.

&ASSIGN VARS=A FROM MDO=file1rec.luname

 -* Locate a component within the MDO

 -* data and copy its contents into the

 -* variable &A.

 -* Mapping Services uses the map to find

 -* out how to locate and recognize the

 -* structure referred to as luname-* within NCL.

Mapping Concepts

270 Network Control Language Programming Guide

Mapping Concepts

A map effectively describes the following to NCL:

■ The names that will be used to reference various components within an
MDO

■ The relationship between these data components

■ The means of identifying each component

■ The way in which the data is represented

Until a map is associated with an MDO, NCL cannot reference components in
the data by name. However, NCL can still process the MDO as a whole.

Data Sources

NCL processing can move data directly into an MDO using many verbs, via the
following sources:

■ From files

■ Across APPC transactions

■ From NCL tokens (as variables and arguments, or args)

■ Across PPI transactions

■ Using &INTREAD, &LOGREAD, &MSGREAD, &PPOREAD

■ From vartables

■ From CNM

■ Using BER encode/decode

Naming

Chapter 13: About Mapping Services 271

Naming

It is possible to reference structures within MDO data by name from NCL. A map
must be attached to the MDO so NCL can use this map to associate names with
physical structures which can occur within the data. By definition, components
are hierarchically arranged. This means that to reference one component
enclosed within another, a concatenation of the enclosing structure names is
required to identify the enclosed one.

For example, the name:

MDO=FILE1REC.DOMAIN.SUBDOMAIN.LU

might be used to reference the structure LU, within a structure called
SUBDOMAIN, which is contained in a structure called DOMAIN, which is within
the data in an MDO called FILE1REC.

To reference all data contained within an MDO, only specify the single MDO
name segment, as follows:

MDO=FILE1REC

Mapping Services, Mapping Support, and NCL Processing

272 Network Control Language Programming Guide

Transfer MDOs Between Nested NCL Procedures

It is possible to share an MDO between nested procedures by using SHRVARS
options. Any MDO selected by the current SHRVARS option is shared in the
same manner that NCL tokens are shared.

Example: Transfer MDOs Between Nested NCL Procedures

In the following example, the MDO called ABC is available in the nested
procedure but the MDO called XYZ is not.

&ASSIGN MDO=ABC MAP=MAP1 DATA=xxxx

 -* Create an MDO called ABC, attach the

 -* map called MAP1 to it, and assign

 -* data into it.

&ASSIGN MDO=XYZ MAP=MAP2 DATA=yyyy

 -* Create an MDO called XYZ

&CONTROL SHRVARS=(A)

 -* Set SHRVARS option.

-EXEC PROC2-* Call procedure PROC2.

Note: There is no support for passing an MDO as an invoked or returned
parameter on nested calls. Only NCL tokens can be passed in this manner.
However, MDOs can be transferred from one NCL process to another using
&WRITE and &INTREAD or any of a number of other verbs.

Mapping Services, Mapping Support, and NCL Processing

Before structures can be referenced within an MDO by name from NCL, a map
must be assigned to the MDO. The map provides NCL with the following
information about an MDO:

■ The type of structures which can be expected within the MDO data

■ How to locate and recognize these structures

■ The names which will be used in NCL to reference these structures

Maps defined to Mapping Services are loaded automatically the first time they
are referenced from NCL. They can also be loaded manually by entering the
LOAD MAP=mapname command.

The LOAD MAP command will only load a map not already in memory. To reset
a map in memory (for example, after modifying an existing map), use the
UNLOAD MAP=mapname command. It will be automatically reloaded on
demand.

Connection to Mapping Support

Chapter 13: About Mapping Services 273

Connection to Mapping Support

An MDO is usually attached to mapping support at the same time it is created or
data is first placed into it. The MAP= operand is available on many verbs and is
used to attach a map to an MDO.

Example: Connect to Mapping Support

&ASSIGN MDO=xxx MAP=MYMAP

 -* This creates the MDO if it didn't already

 -* exist, and assigns a map to it.

&FILE GET ID=FILEID MDO=yyy MAP=MYMAP2

 -* This creates the MDO if it didn't

 -* exist, places data from the file record into

 -* it, and attaches the map to it.

&APPC SEND... VARS=a* MAP=MYMAP2

 -* This transmits the data in the variables, and

 -* the mapname.

&APPC RECEIVE... MDO=zzz

 -* This receives the data into the MDO, and

 -* automatically attaches any map received to the

 -* MDO as well.

Sourcing Data

MDO data can be sourced from NCL tokens, many NCL input verbs or as a
hard-coded string. An MDO does not have to be attached to a map before data
can be placed into it, because MDOs and maps are separate entities. It is
possible to attach a map to an MDO before or after data has been placed into it.

Example: Sourcing Data

&ASSIGN MDO=ccc DATA=data

 -* assign data into the MDO

&ASSIGN MDO=ccc MAP=mapname

 -* attach a map to the MDO.

Note: After map connection, the &ZMDORC system variable should be checked
to ensure the connection was good. If Mapping Services detects a mismatch
between the map definition and the MDO data, &ZMDORC contains a non-zero
value and subsequent access to the MDO can produce name checks or type
checks.

Manipulate and Extract Data

274 Network Control Language Programming Guide

Manipulate and Extract Data

Data in an MDO is manipulated using the &ASSIGN statement. There are two
major operand forms on the &ASSIGN statement; an MDO stem name, and a
compound name.

Stem Name: MDO=vvv

Compound Name: MDO=aaa.bbb.ccc

The stem name is used to refer to the entire data portion of an MDO. An MDO
does not have to have a map attached to it to be referenced by its stem.

The compound name is used to refer to a structure within the MDO. A map
must be attached to the MDO for this type of reference, otherwise NCL will not
be able to locate the structure. (NCL cannot make sense of the data without a
map.)

The &ASSIGN verb is useful when extracting individual components in an MDO
into NCL tokens.

Use a Map in NCL Processing

After a map is defined, it can be used to interpret the contents of MDOs in NCL.

The following example demonstrates how MDOs can be used for the
encapsulation and transmission of data in NCL.

Procedure A can receive messages from procedure B, and perform some desired
action on some of the data in the message. If the action is completed
successfully, procedure A will return the modified data to the initial sender
(procedure B), with a message indicating the operation was successful. If the
action is not completed successfully, procedure A will carry out some extra error
processing and then return a message to the sender indicating that the
operation was unsuccessful.

The message data is mapped with a map that contains the following
components:

ACTION

The action to be performed.

ASN.1 Type: GraphicString

Use a Map in NCL Processing

Chapter 13: About Mapping Services 275

DATA

The data on which to perform the action.

ASN.1 Type: OCTET STRING

ACTIONRESULT

The result of the action processing.

ASN.1 Type: ENUMERATED

Use a Map in NCL Processing

276 Network Control Language Programming Guide

Procedure A could be as follows:

.RECEIVELOOP

 &INTREAD MDO=ACTIONPARMS -* Read the MDO from the sender

 &ASSIGN VARS=SENDER FROM MDO=$INT.SOURCE.NCLID

 -* Extract the senders NCLID

 -* from the system MDO, $INT,

 -* which is always set after an

 -* &INTREAD operation, and is

 -* mapped by the $MSG system map

 &ASSIGN VARS=ACTION FROM MDO=ACTIONPARMS.ACTION

 -* Extract the type of

 -* action to be performed

 &ASSIGN VARS=ACTIONDATA FROM MDO=ACTIONPARMS.DATA

 -* Extract the data on which

 -* to perform the action

-EXEC ACTPROC ACTION=&ACTION ACTIONDATA=&ACTIONDATA

 -* Call proc to carry out

 -* action

 &IF &RETCODE EQ 0 &THEN + -* Check return code from action

 &DO

 &ASSIGN MDO=ACTIONPARMS.DATA FROM VARS=ACTIONDATA

 -* Set modified data in MDO

 &ASSIGN MDO=ACTIONPARMS.ACTIONRESULT DATA=OK

 -* Set result of action in MDO

 &WRITE NCLID=&SENDER MDO=ACTIONPARMS

 -* Return modified MDO to caller

 &DOEND

 &ELSE +

 &DO

 &GOSUB .ERRORPROC -* Do error processing

 &ASSIGN MDO=ACTIONPARMS.ACTIONRESULT DATA=FAIL

 -* Set results of action in MDO

 &WRITE NCLID=&SENDER MDO=ACTIONPARMS

 -* Return MDO to caller

 &DOEND

&GOTO .RECEIVELOOP -* Loop to process next message

You can see that Mapping Services greatly simplifies the NCL required to process
complicated data formats. Often, externally-sourced data has a format which is
awkward to manage in NCL. In these situations, Mapping Services can prove to
be a very useful tool.

Chapter 14: Using Mapping Services 277

Chapter 14: Using Mapping Services

This section contains the following topics:

Overview (see page 277)
MDO Behavior and NCL Processing Conventions (see page 278)
&ASSIGN Verb (see page 283)
Query MDO Components (see page 289)
NCL Reference, Type Checking, and Data Behavior (see page 293)
Type Conversion for MDO Assignment (see page 306)

Overview

Mapping Services uses the ISO standard Abstract Syntax Notation One, or
ASN.1, as the map definition language. The added sophistication that ASN.1
brings to the definition phase leads to greatly improved application use of
Mapped Data Objects (MDOs).

By understanding ASN.1 and how Mapping Services implements its concepts,
significant advantages in NCL processing of complex data structures can be
realized. Using ASN.1 in defining maps, all MDO components have a data type.
Only data that is of the correct type for the component can be assigned into a
component. An attempt to place an invalid value into an MDO component fails
with a type check return code.

Two types of data are available:

■ Simple—for simple data types, the assigned data must be of the correct
format for the component type. Otherwise, type check results.

■ Constructed—for constructed data types, entire construction must be valid
according to the logical type (described by the ASN.1 type definition) and
the physical type (described by any Mapping Services
implementation-specific definitions). Otherwise, type check or data check
results.

MDO Behavior and NCL Processing Conventions

278 Network Control Language Programming Guide

MDO Behavior and NCL Processing Conventions

After using any verb that references an MDO, the MDO return code (&ZMDORC)
and feedback (&ZMDOFDBK) system variables are set. Therefore, check most
verbs when using operations involving MDOs.

Because &ASSIGN is used more frequently to process MDO data, an alternative
exists. If &CONTROL MDOCHK is in effect, any error situations that normally
result in a return code of 8 or higher cause the NCL procedure to terminate, but
only if &ASSIGN sets the return code or feedback variable.

If &FILE GET MDO=xxx sets &ZMDORC to greater than 8, the process will not
terminate if &CONTROL MDOCHK is in effect. However, if the default
&CONTROL NOMDOCHK is in effect, all error checks are reported through the
return code and feedback values.

The possible values of the return code and feedback system variables and their
meanings are shown in the following table.

&ZMDORC &ZMDOFDBK Meaning

0 0 ok

4 0 null: optional component present but
empty, or null data assigned to optional
component

 1 null: optional component not present

 2 null: mandatory component present but
empty, or null data assigned to
mandatory component

 3 null: mandatory component not present

 4 string was truncated (applies to FIX offset
or length components only)

8 0 type check: data is invalid for type

 1 data check: data is invalid structurally -a
common cause is data too long or too
short

12 0 name check: component not defined

 1 name check: index position invalid or
value is out of range

MDO Behavior and NCL Processing Conventions

Chapter 14: Using Mapping Services 279

&ZMDORC &ZMDOFDBK Meaning

16 0 map check: map not found

 1 map check: map contains errors, load
failed

 2 map check: map/data mismatch

To minimize the use of these return codes it is necessary to understand the
general behavior of MDOs with NCL.

An &ZMDORC value of 0 means that the data referenced was of a valid type for
the component referenced. On assignment, the data is formatted and placed in
the target component, resulting in an &ZMDOFDBK value of 0.

An &ZMDORC value of 4 is returned when an MDO component has a null, or
empty, value (unless it was the NULL type in which case &ZMDORC is 0). Any
component, regardless of its type, can be set to a null value. &ZMDORC is also
set to 4 when a string type is truncated and an &ZMDOFDBK value of 4 is
returned, but only if it is a fixed-length component.

An &ZMDORC value of 8 is returned if &CONTROL NOMDOCHK is in effect, and
the data referenced does not conform to the type of the component referenced
or cannot be assigned for other reasons. In exceptional circumstances, a type
check or data check can result on a read intent operation. More usually,
however, it occurs on an update intent operation where the data being assigned
is invalid for the data type and a type check results. If on an update operation
the function cannot be performed for other reasons, due to insufficient
available space in a component that cannot be further extended, a data check
results. In all such cases the operation fails, and the referenced MDO
component is unchanged.

An &ZMDORC value of 12 is returned under the following conditions:

■ &CONTROL NOMDOCHK is in effect and the MDO is mapped but the specific
component referenced was not defined in the map

■ The name is valid, but an index was used on a component that is not
allowed to be indexed

■ The index exceeds the defined index range

An &ZMDORC value of 16 is returned if, on any verb, a map connection request
fails. &ZMDOFDBK indicates the reason that the map connection failed.

MDO Behavior and NCL Processing Conventions

280 Network Control Language Programming Guide

Other system variables available to interrogate error conditions are:

&ZMDOID

Contains the identifier of the last known MDO involved in the last operation.

&ZMDOMAP

Contains the map name for &ZMDOID.

&ZMDONAME

Contains the fully qualified name of the MDO component involved in the
last operation.

&ZMDOCOMP

Contains the name of the component. The value is the last name segment of
the fully qualified name for the MDO component involved in the last
operation, if applicable.

&ZMDOTYPE

Contains the type of &ZMDOCOMP, if applicable.

&ZMDOTAG

Contains the tag value of the component involved in the last operation, if
applicable.

MDO Behavior and NCL Processing Conventions

Chapter 14: Using Mapping Services 281

Input Operations on an MDO

A number of NCL verbs allow input operations on an entire MDO. These are:

■ &APPC RECEIVE

■ &ASSIGN

■ &CNMREAD

■ &DECODE

■ &ENCODE

■ &FILE GET

■ &INTREAD

■ &LOGREAD

■ &MSGREAD

■ &PPI RECEIVE

■ &PPOREAD

■ &VARTABLE GET

When the MDO is targeted for input the MAP operand is allowed to define the
mapping of the data object being accessed. The state of the MDO following any
such input operation is determined by a number of factors that apply generally
to all verbs. Together these considerations produce an MDO behavior which is
predictable, as follows.

■ If the verb return code indicates that the request was not satisfied, either
due to some error, or because no data satisfied the particular request
(perhaps due to timeout, or selection criteria or similar), the target MDO is
deleted. Subsequent reference to the MDO or its components is invalid, and
will produce a name check return code.

■ If the verb return code indicates that the request was satisfied, then the
target MDO always exists, even if it is null (or empty). If no map name was
supplied on the input operation, and no default map name applies, then the
MDO is unmapped. If a map name was supplied but either the map could
not be found, was in error, or the data did not conform to the map
definition, then the map check return code is set with a feedback indicating
the nature of the error. If the map was not found, the data is present in the
MDO which is unmapped. Otherwise, if no errors are encountered, the
MDO will exist and is mapped according to the map name implied.

MDO Behavior and NCL Processing Conventions

282 Network Control Language Programming Guide

After performing a successful input operation on an MDO, the &ZMDORC
system variable should always be checked to ensure that the outcome was
good, and that the MDO is still mapped. Failure to do so can cause the NCL
procedure to be terminated if a reference to an MDO component is made, the
MDO is unmapped, and &CONTROL MDOCHK is in effect.

However, once the MDO is bound to the map without error, its contents are
guaranteed valid by Mapping Services and there is usually no need to check the
return codes for every access to MDO components, but they are available if
required.

Output Operations from an MDO

A number of NCL verbs allow output operations from an entire MDO. These
include the following:

■ &APPC SEND

■ &ASSIGN

■ &CNMALERT

■ &CNMSEND

■ &DECODE

■ &ENCODE

■ &EVENT

■ &FILE PUT

■ &PPI SEND

■ &VARTABLE PUT

■ &WRITE

Read exceptions from an MDO are rare, and are confined to a name check if an
undefined component is referenced, or a data check if the data does not
conform to the mapping rules. However, in some instances where the
component definitions of fixed fields overlap each other type checks on read are
possible.

&ASSIGN Verb

Chapter 14: Using Mapping Services 283

&ASSIGN Verb

The &ASSIGN verb provides the only access to and from individual components
within an MDO.

Note: For more information about the &ASSIGN verb, see the Network Control
Language Reference Guide.

Create and Delete MDOs

To create a mapped MDO using the &ASSIGN verb, issue one of the following
statements:

&ASSIGN MDO=mdo MAP=mapname [DATA=data]

&ASSIGN MDO=mdo MAP=mapname [FROM VARS=vars...]

To copy an MDO:

&ASSIGN MDO=mdo FROM MDO=sourcemdo

To create an unmapped MDO:

&ASSIGN MDO=mdo DATA=data

To delete an MDO entirely:

&ASSIGN MDO=mdo

&ASSIGN Verb

284 Network Control Language Programming Guide

Assign Data into an MDO

The &ASSIGN OPT=DATA option is the default and can be used to set MDO
components from:

■ Another MDO component

■ One or more NCL variables

■ User supplied data

When assigning into an MDO component of a simple type from NCL variables or
constant data, the input supplied must be in the valid external form for the
component type or a type check results.

When assigning into an MDO component of a simple type from another MDO
component the input selected must have a local form valid for the target
component type. If the types are different, type conversion takes place where
possible. Otherwise, a type check results.

When assigning into an MDO component that is a constructed type, the
following conditions must be satisfied:

■ The data must be valid in its physical format according to the structuring
rules for the target component.

■ Each embedded component must be in its valid local form.

If the conditions are not satisfied, a type check results.

Note: For more information about the external form and local form of data for
each type, see Managed Object Development Services Programmer and
Administrator Guide.

&ASSIGN Verb

Chapter 14: Using Mapping Services 285

Assign into/from a Single MDO Component

The following assign statements can be used to set the value of a single target
MDO component, which can be the entire MDO, from NCL variables or constant
data:

&ASSIGN MDO=a.b.c DATA=xxx

&ASSIGN MDO=a.b.c FROM VARS=vars...

In either case the input string must be valid external form for the component or
a type check results.

When multiple NCL variables are specified as the source data, they are
concatenated together to form the input string. The exception to this is if the
assignment is into an entire MDO mapped by $NCL. In this case, a standard
variable structure is built and maintains the variable boundaries.

The following assign statement can be used to get the value of a single target
MDO component, which can be the entire MDO, into NCL variables:

&ASSIGN VARS=vars FROM MDO=a.b.c

In all cases, the result is a valid external form for the component unless a type
check or data check occurs.

When multiple NCL variables are specified as the target data, they are
segmented according to the maximum variable size (or specific segment sizes if
supplied) from the entire output string. The exception to this is if the
assignment is from an entire MDO mapped by $NCL. In this case, the NCL
variables are updated according to the variable boundaries within the MDO.

The following assign statement can be used to move the value of a single target
MDO component to another MDO component:

&ASSIGN MDO=a.b.c FROM MDO=x.y.z

In this case the assignment takes place using the normal local form for the
component (not the external form) and as usual unless the input is valid, a type
check results.

&ASSIGN Verb

286 Network Control Language Programming Guide

Assign into/from Multiple MDO Components within a SEQUENCE or SET Type

When an MDO component is a structure defined with a type of SEQUENCE or
SET, you can assign into or from some or all of the components that comprise
the structure by name. This is a generic form of assign with the following
possible options and syntax:

&ASSIGN MDO=a.b.*

 { GENERIC | ADD | REPLACE | UPDATE }

 DATA=data

&ASSIGN MDO=a.b.*

 FROM

 VARS=vars*

 { GENERIC | ADD | REPLACE | UPDATE }

&ASSIGN MDO=a.b.*

 { GENERIC | ADD | REPLACE | UPDATE }

 { FROM | PRESENT_IN | DEFINED_IN }

 MDO=x.y.*

&ASSIGN VARS=vars*

 { GENERIC | ADD | REPLACE | UPDATE }

 { FROM | PRESENT_IN | DEFINED_IN }

 MDO=x.y.*

Note: The asterisk (*) must be in place of the last component name only.

In all cases:

■ The multiple assignment proceeds as though a separate assignment was
issued for each component selected.

■ The PRESENT_IN and DEFINED_IN keywords apply only to a source MDO,
not a target MDO.

■ The GENERIC, ADD, REPLACE, and UPDATE keywords affect target MDO
components or NCL variables only.

&ASSIGN Verb

Chapter 14: Using Mapping Services 287

For all options, when assigning data into an MDO, the process is driven by the
components defined within the map for the target MDO. Each component
defined within the parent structure is a target for an assign.

■ If the DATA keyword is used as the source, all target components are
subject to assignment of the same data value.

■ If the VARS keyword is used as the source, each target component name is
used to access a source NCL variable. The name of the variable is
constructed by appending the component name to the supplied VARS
prefix.

■ If the MDO keyword is used as the source, each target component name is
used to access a source component. The name of the source component is
constructed by adding the component name as the last name segment in
the generic source MDO name.

When selecting data for assignment from an MDO, the FROM keyword is used
to select only source components that have a data value that is not null. The
PRESENT_IN keyword is used to select from all source components that are
present. For both FROM and PRESENT_IN options, any component that is
defined but not present is deemed to be null. When the DDEFINED_IN keyword
is used, all components defined in the target map for the generic name level
indicated take part in the operation, regardless of whether any data exists.
Components not defined are deemed to be null.

When assigning data from an MDO into NCL variables, the process is driven by
the components defined in the source MDO. Target NCL variable names are
constructed by appending selected component names to the supplied VARS
prefix.

When the GENERIC keyword is used, any existing target NCL variables or MDO
components are first deleted, then each is assigned the value from the
corresponding source component. If no source data exists no assignment takes
place.

When the ADD keyword is used, only those NCL variables not currently present,
or MDO components defined but not currently present in the target structure,
take part in the assignment process. That is, only new NCL variables or MDO
components are added and no existing ones are affected.

&ASSIGN Verb

288 Network Control Language Programming Guide

When the REPLACE keyword is used, only those NCL variables that are present,
or MDO components that are defined and are present in the target structure,
take part in the assignment process. That is, no addition takes place. Only
existing NCL variables that have new source data or existing MDO components
that have new source data are affected, but those variables that have no new
source data are not affected.

When the UPDATE keyword is used, both addition and replacement take place,
but existing NCL variables or MDO components that have no new source data
are unaffected.

Assign into/from Components within a SEQUENCE OF or SET OF Type

When an MDO component is a structure defined with a type of SEQUENCE OF or
SET OF, you can assign into or from some or all of the components that
comprise the structure by a generic index value. This form of assign uses a
varying range, and the syntax is as follows:

&ASSIGN { MDO=a.b.{*} | VARS=aaa*}

 RANGE=(n,m)

 { DATA=data |

 { FROM { VARS=bbb* | MDO=x.y.{*} }

 [RANGE=(p,q)] } }

Note: The asterisk in braces ({*}) must replace a SET OF or SEQUENCE OF index
only. The asterisk can appear once only anywhere within the MDO name
referenced.

The target component names of the form a.b.{i}, where i = n up to m, take part
in the assignment from the corresponding source variable. The multiple
assignments take place as though a separate assignment was issued for each
item within the SET OF or SEQUENCE OF structure. The variable index can be the
last part of the MDO name (as shown in the previous example), or more name
segments can follow (for example, MDO=a.b.{*}.c).

Query MDO Components

Chapter 14: Using Mapping Services 289

Query MDO Components

Once an MDO is connected to a map, it is possible to query its structure (as
present in the MDO), or its definition (as defined in the map). The syntax used is
part of an &ASSIGN, where the results of the query must be placed into NCL
variables.

&ASSIGN OPT={ NAMES |

 TAGS |

 TYPE |

 LENGTH |

 #ITEMS |

 NAMEDVALUES |

 VALIDVALUES }

 VARS=vars...

 { PRESENT_IN | DEFINED_IN | MANDATORY }

 MDO=mdo_name

When the PRESENT_IN keyword is specified the information is returned only for
those components that are found to be present within the MDO. When the
DEFINED_IN keyword is used, the information is returned for all those
components defined within the connected map, regardless of their presence or
absence in the MDO itself. If the MANDATORY keyword is used then only those
defined components that are mandatory are selected.

Query MDO Components

290 Network Control Language Programming Guide

The various options and their meanings are as follows:

OPT=NAMES (or OPT=NAME)

Applies to PRESENT_IN, DEFINED_IN, and MANDATORY options and returns
the component names associated with the target mdo_name as follows:

■ If only an MDO stem name is specified (for example, MDO=abc), then
the name of the connected map is returned as the defined component
name, but only if the MDO exists.

■ If mdo_name is a compound name (for example, MDO=a.b.c), the name
of the last component in the name list is returned (that is, c), depending
upon the PRESENT_IN, DEFINED_IN, or MANDATORY option.

■ If the mdo_name is a compound generic name (for example,
MDO=a.b.c.*), multiple names can be returned, where each name
returned is a subcomponent of the nominated component. For
example, for MDO=a.b.c.*, all components defined within “c” are
returned. This format is useful in determining the names of all
components that are either present in, or defined within, a given
structure. It is also useful in determining which component is within a
structure that is a CHOICE type. However, for SEQUENCE OF and SET OF
items, it is possible to have null named components because the
SEQUENCE or SET OF items are processed by index value only.

A compound variable indexed name (for example, MDO=a.b{*}.c, or
MDO=a.b.{*}) is not supported on this query.

OPT=TAGS

Applies to PRESENT_IN, DEFINED_IN, and MANDATORY options and returns
the component tags used by Mapping Services associated with the target
mdo_name. Component selection is as for OPT=NAMES.

OPT=TYPE

Applies to PRESENT_IN, DEFINED_IN, and MANDATORY options and returns
the component type defined within the map and associated with the target
mdo_name. Component selection is as for OPT=NAMES.

OPT=LENGTH

Applies only when PRESENT_IN is specified and returns the local form data
length within the MDO of the target components. Component selection is as
for OPT=NAMES.

Query MDO Components

Chapter 14: Using Mapping Services 291

OPT=#ITEMS

Applies only when PRESENT_IN is specified, and returns the number of
items within a nominated component as follows:

■ If mdo_name is a stem name (for example, MDO=stem) or a compound
name (for example, MDO=a.b.c), then a count of 0 is returned if the
component does not exist. Otherwise, it is 1.

■ If mdo_name is a compound generic name (for example, MDO=a.b.c.*),
a count of 0 is returned if the nominated component a.b.c is one of the
following:

– Does not exist

– Exists but is empty

– Exists but is not constructed

Otherwise, it provides the number of components present within the
structure a.b.c.

■ If mdo_name is a compound variable indexed name (for example,
MDO=a.b{*} or MDO=a.b.{*}), the number of components present in
the SET OF or SEQUENCE OF structure is returned. If the structure does
not exist or is empty, 0 is returned. The variable index must be in the
last name segment.

OPT=NAMEDVALUES

Applies to components that have named values associated with their type.
These types are limited to BIT STRING, INTEGER, and ENUMERATED. Other
types return null results. No generic indexes or generic names are allowed
on this option.

If DEFINED_IN is specified a list of the named values defined in the map for
the specified component is returned.

PRESENT_IN is invalid for OPT=NAMEDVALUES.

OPT=VALIDVALUES

Applies to string types that can have their character set constrained to
particular characters or strings. This option only works with the defined
keyword. If a string type (for example, GraphicString) has been constrained
to a particular set of characters or strings, then this option returns the valid
characters or strings in the target variable. If there are no constraints then
no values are returned on assignment. The &ZVARCNT system variable is set
to indicate the number of target variables set by the assignment.

Query MDO Components

292 Network Control Language Programming Guide

Example 1: Query MDO Components

The following component is defined:

datax GraphicString ("ABCD" | "xyz" | "QQQ")

You use the following statement to query the component:

&ASSIGN VARS=X* OPT=VALIDVALUES DEFINED MDO=... datax

The following variables are returned:

&X1=ABCD

&X2=xyz

&X3=QQQ

Example 2: Query MDO Components

The following component is defined:

datax GraphicString (FROM ("A"c | "C" | "Y"C | "X"))

You use the following statement to query the component:

&ASSIGN VARS=X* OPT=VALIDVALUES DEFINED MDO=... datax

The following variables are returned:

&X1=A

&X2=C

&X3=Y

&X4=X

NCL Reference, Type Checking, and Data Behavior

Chapter 14: Using Mapping Services 293

NCL Reference, Type Checking, and Data Behavior

When referencing an MDO in an NCL procedure, Mapping Services validates
that the named component is defined (according to the name hierarchy
supplied), and that the data within the component is valid, according to its
underlying ASN.1 type. Each ASN.1 type can contain only certain valid values.
Mapping Services checks the data value when retrieving data from, or assigning
data into, an MDO. An operation attempting to retrieve or assign invalid data is
rejected by Mapping Services with a feedback indicating type check.

In order to perform type checking Mapping Services first determines the base
ASN.1 type of the component. Where a component is of a user defined type,
the base ASN.1 type of the user defined type is inherited by the component. It is
possible to have a number of levels of indirection between a user defined type
and its base ASN.1 type.

The valid NCL values allowed for each of the base ASN.1 types is termed the
external form. In addition to the set of valid values for each type, a specific
component can be further constrained in what values are acceptable. Such
constraints can be the result of either ASN.1 definitions or compiler directives.
Finally, when data representing a valid NCL value is accepted for a component
update, it is subject to a transformation from external form to local form, which
is the MDO internal representation of data. This process can carry with it further
constraints.

The valid external form values, and the behavior of data managed by Mapping
Services, is described for each type in the following sections.

Notes:

■ In the following descriptions, all string types that are defined as fixed (using
the --<FIX(n)>-- directive) are subject to padding and truncation, without
any indication in the return codes.

■ Any types constrained by the SIZE parameter are not subject to padding or
truncation. The data supplied must be within the SIZE constraints specified,
or a type check results.

NCL Reference, Type Checking, and Data Behavior

294 Network Control Language Programming Guide

BOOLEAN Type

The BOOLEAN type is used to represent a value of true or false only.

External Form - Input

The local character strings TRUE and FALSE (not case sensitive) are
accepted, while the digit 0 is interpreted as false, and the digit 1 is true.

External Form - Output

The digit 0 (false) or 1 (true) is always returned.

Local Form and Behavior

Internally, Mapping Services stores a value of X'00' for false, and X'01' for
true (and accepts any value other than X'00' as true).

For an input operation, where the component is variable length, its length is
always set to 1. Where the component length is fixed and is greater than 1,
the value occupies the first byte only (that is, it is left-aligned) and the
remainder of the component's data is set to zeros.

For an output operation, where the component is located and has a length
greater than 1, only the first byte is inspected as the value.

INTEGER Type

The INTEGER type is used to contain any positive or negative whole numbers in
the range -2,147,483,648 to 2,147,483,647 (that is, it is a signed 32 bit number).

External Form - Input

Valid input consists of a string of up to 15 digits optionally preceded by a
plus sign (+) or minus sign (-) providing the sign (positive or negative) of the
value (positive if omitted). All other characters must be valid digits (that is, 0
through 9). Alternatively, if the map definition included named values for
this component, the symbolic name of the named value can be supplied as
external form input.

External Form - Output

Output consists of a string of one or more local characters. If the integer
value is negative the first character is a minus sign (-), otherwise the sign is
omitted. All other characters are numeric characters. Leading zeroes are
stripped.

NCL Reference, Type Checking, and Data Behavior

Chapter 14: Using Mapping Services 295

Local Form and Behavior

Internally, Mapping Services can store integers in one of three formats:

binary

Can be up to 4 bytes in length. If the length is not fixed then the value is
kept in the smallest number of bytes possible. If the length is fixed then
the value is right-aligned and sign extended to the left.

packed

Can be up to 8 bytes in length. The integer value is converted to the
packed decimal equivalent. If the length is not fixed then the value is
kept in the smallest number of bytes possible. If the length is fixed then
the value is right-aligned and zero padded to the left.

zoned

Can be up to 15 bytes in length. The integer value is converted to the
zoned decimal equivalent. If the length is not fixed then the value is
kept in the smallest number of bytes possible. If the length is fixed then
the value is right aligned and zero padded to the left.

For any format, if a value exceeds that which can be stored without loss of
significance a type check results. If a named value is input then the map
definition is used to determine the actual integer value.

BIT STRING Type

The BIT STRING type is used to contain any data where individual bit values
might have meaning. Mapping Services supports two types of BIT STRING
access, standard and boolean.

NCL Reference, Type Checking, and Data Behavior

296 Network Control Language Programming Guide

Standard BIT STRING Access

Standard BIT STRING access deals with the string as a whole, allowing
manipulation of the entire component through a single operation, as for most
other types.

External Form - Input

Valid external form can be a string of one or more digits, each a 0 or 1.
However, where named values are defined for the BIT STRING type, a list of
named values, each separated by a plus sign (+) or a minus sign (-), is an
acceptable alternative. A named value preceded by a plus sign indicates that
the named bit value should be set to true (the bit is set to 1), and a minus
sign indicates that the value should be set to false (the bit is set to 0).

External Form - Output

The output format depends upon whether or not named values are defined
for the BIT STRING type. Where no named values are defined the output
consists of a string of zero or more (always a multiple of 8) digits, each a 0 or
1. Where one or more named values do exist the output is a character string
comprised of every named value corresponding to a set bit preceded by a
plus sign meaning the value is true (the named bit is 1). The names of bits
which are not set are not returned.

Local Form and Behavior

When a string if 0's and 1's are supplied as input, each digit in the input
sequence is treated (left to right) as the value of the corresponding bit in
that position of the local form data. If the number of bits supplied is not a
multiple of 8, then trailing bits are set to zero and padded to a byte
boundary. If the component has a fixed length exceeding that of the input
string the value is left-aligned, and all unreferenced bytes are set to X'00'. If
the component cannot contain the number of input bytes supplied, a data
check results.

When a list of named values, each preceded by a plus sign or a minus sign, is
supplied as input only the named bits take part in the operation. Each
named bit preceded by a plus sign is set to 1 (true), while each bit preceded
by a minus sign is set to 0 (false). All other bits in the BIT STRING are
unaffected by the input operation.

When fetching the value of a BIT STRING, a named value list is returned if
any named values are defined for the type, else a string of 0's and 1's is
returned corresponding to the BIT STRING values. When named values are
defined, all other bits in the BIT STRING are ignored on output regardless of
their value.

NCL Reference, Type Checking, and Data Behavior

Chapter 14: Using Mapping Services 297

Boolean BIT STRING Access

Boolean BIT STRING access deals with individual bit level access and operates
only through named values. This access is recommended because program
access to bits is only via their symbolic named values, thus removing from NCL
the need to know relative bit positions.

For Boolean BIT STRING access to be invoked, the named value of a bit is
provided by NCL as an additional name segment after the BIT STRING
component name. Since the BIT STRING type is primitive, the additional name in
the name hierarchy is understood to be a named value, and is treated as a
BOOLEAN type. No matter where the named value is in the BIT STRING the
value of the bit is always 0 or 1, as for a BOOLEAN type.

External Form - Input

The local character strings TRUE and FALSE (not case sensitive) are
accepted, while the digit 0 is interpreted as false, and the digit 1 is true. Null
is a type check in this case.

External Form - Output

The digit 0 (false) or 1 (true) is always returned.

Local Form and Behavior

The component name plus the named value is treated as a reference to a
specific bit (the bit position within the component being defined by the
named value), and that bit is set to 0 or 1 depending upon the input. No
other bits in the BIT STRING component are affected. If the component is
extended to accommodate the input then all other bits are set to 0.

OCTET STRING Type

The OCTET STRING type is used to contain any data where no formatting is
required.

External Form - Input

Any data.

NCL Reference, Type Checking, and Data Behavior

298 Network Control Language Programming Guide

External Form - Output

Data is returned unchanged.

Local Form and Behavior

Data is stored as is. If the component has a fixed length exceeding that of
the input string, the data is left-aligned, and all unreferenced bytes are set
to X'00'. If the component cannot contain the number of input bytes
supplied, a data check results.

HEX STRING Type

The HEX STRING type is a Mapping Services extension to ASN.1, but is processed
as a base ASN.1 type. It is identical in all respects to the ASN.1 OCTET STRING
type except for its external form representation.

External Form - Input

Valid input consists of a string of one or more local characters, each selected
from the set 0123456789ABCDEF. Each pair of hexadecimal characters
represents a single byte value. If an odd number of characters is supplied
the string is treated as though padded on the left with a single zero.

External Form - Output

Data is returned in hexadecimal characters, as for input. An even number of
characters is always returned.

Local Form and Behavior

Each two hexadecimal characters of input represents the actual data to be
stored in a single byte. Otherwise behavior is as for OCTET STRING.

NULL Type

The NULL type is used where data in a component either must be null (that is,
empty), or not accessible.

External Form - Input

The only valid input is a null value.

NCL Reference, Type Checking, and Data Behavior

Chapter 14: Using Mapping Services 299

External Form - Output

A null value is always returned.

Local Form and Behavior

The component can be created by an input operation, but no contents are
modified. If it already exists no data is modified.

OBJECT IDENTIFIER Type

The OBJECT IDENTIFIER type is used to contain object identifier values that
uniquely identify registered objects.

External Form - Input

Any sequence of characters (from the set 0123456789.) that does not begin
or end with a period (.), contains no consecutive periods, but contains at
least one period. Each sequence of decimal digits punctuated by a period
represents a sub-identifier in the series of sub-identifiers that comprise an
object identifier value.

External Form - Output

As for input.

Local Form and Behavior

The data format is as supplied for input, however truncation is not allowed.
If the component is fixed length then it must be able to contain the input
string, and if necessary will be padded with blanks, otherwise a data check
results.

ObjectDescriptor Type

The ObjectDescriptor type is used to contain object descriptions for registered
objects.

External Form - Input

As supplied.

External Form - Output

As supplied.

Local Form and Behavior

The data format is as supplied for input. Normal string padding and
truncation rules apply.

NCL Reference, Type Checking, and Data Behavior

300 Network Control Language Programming Guide

REAL Type

The REAL type is used to contain floating-point, or scientific notation, numbers
in the range 10-70 to 1070.

External Form - Input

+ or -

(Optional) Plus or minus sign.

nnnnnn

(Optional) Any number of digits.

period (.)

(Optional) Decimal place.

mmmmmm

(Optional) Any number of digits.

Esxx

(Optional) Signed exponent power of 10.

Range: -99 to 99

Either, or both, nnnnnn and mmmmmm are present, and the resulting REAL
number is within the allowable range.

Examples: External Form - Input

14578923455096765442839404

-123.567

.555

.0023E-23

3.142776589E+66

NCL Reference, Type Checking, and Data Behavior

Chapter 14: Using Mapping Services 301

External Form - Output

Normalized decimal real number.

+ or -

Plus or minus sign of the value.

.

Decimal place indicator.

nnnnnn

15 significant fraction digits.

Esxx

Signed exponent power of 10.

Examples: External Form - Output

+.314277658900000E-10

-.123456789000000E+52

Local Form and Behavior

For IBM mainframes, local form is a 64-bit long floating-point value, and the
component must be at least 8 bytes in length. Truncation is not allowed, but
if the component has a fixed length greater than 8 bytes the value is
left-aligned and padded on the right with zero bytes.

ENUMERATED Type

The ENUMERATED type is used to constrain a component to a defined set of
values. Each defined value is named using a name identifier similar to a
component name. Associated with each name is a unique integer value (which
can be signed), for example:

Color ::=ENUMERATED { red(0),blue(1),yellow(2),

 green(3),black(7) }

External Form—Input

The external form must be one of the names listed in the ENUMERATED
type. The enumerated values are not allowed (that is, red is valid, 0 is not).

NCL Reference, Type Checking, and Data Behavior

302 Network Control Language Programming Guide

External Form—Output

Same as input.

Local Form and Behavior

Internally, the ENUMERATED value is kept in the same manner, and is
subject to the same local form constraints, as an INTEGER of the binary local
form.

NumericString Type

The NumericString is a subset of GeneralString which comprises:

■ 0 to 9 Numeric characters

■ () Space or blank character

External Form - Input

Any string of valid characters, as described.

External Form - Output

Same as input.

Local Form and Behavior

On input data is stored as supplied. Normal string padding and truncation
rules apply.

PrintableString Type

The PrintableString is a subset of GeneralString which comprises:

■ a to z (lowercase alphabetic characters)

■ A to Z (uppercase alphabetic characters)

■ 0 to 9 (numeric characters)

■ () (the space, or blank character)

■ ' () + , - . / : = ? (special characters)

External Form - Input

Any string of valid characters, as described.

NCL Reference, Type Checking, and Data Behavior

Chapter 14: Using Mapping Services 303

External Form - Output

Same as input.

Local Form and Behavior

On input data is stored as supplied. Normal string padding and truncation
rules apply.

TeletexString Type

Not used in NCL.

External Form - Input

As supplied.

External Form - Output

As supplied.

Local Form and Behavior

As for OCTET STRING.

VideotexString Type

Not used in NCL.

External Form - Input

As supplied.

External Form - Output

As supplied.

Local Form and Behavior

As for OCTET STRING.

IA5String Type

Transparent general character set. (VisibleString plus control characters).

External Form - Input

As supplied.

NCL Reference, Type Checking, and Data Behavior

304 Network Control Language Programming Guide

External Form - Output

As supplied.

Local Form and Behavior

On input data is stored as supplied. Normal string padding and truncation
rules apply.

UTCTime Type

Date and time, as Universal Coordinated Time (year without century numbers),
in the format:

YYMMDDHHMM[SS]Z

GMT date and time (to minutes or seconds); Z indicates GMT time

YYMMDDHHMM[SS]sHHMM

Local date and time (to minutes or seconds); with signed zone offset from
GMT time (s = + or -)

External Form - Input

Any valid input, as described.

External Form - Output

Any valid data, as described.

Local Form and Behavior

On input data is stored as supplied. If the component has a fixed length then
a short input string will be padded with blanks. Truncation is not allowed.

GeneralizedTime Type

Date and time, as GeneralizedTime (year includes century numbers), in the
format:

YYYYMMDDHH[MM[SS]][.f]Z

GMT date and time (to hours, minutes or seconds); with optional fractional
time units to any significance (hours, minutes or seconds); Z indicates GMT
time

NCL Reference, Type Checking, and Data Behavior

Chapter 14: Using Mapping Services 305

YYYYMMDDHH[MM[SS]][.f][sHHMM]

Local date and time (to hours, minutes or seconds); with optional fractional
time units to any significance (hours, minutes or seconds); with signed zone
offset from GMT time (s = + or -)

External Form - Input

Any valid input, as described.

External Form - Output

Any valid data, as described.

Local Form and Behavior

On input data is stored as supplied. Normal string padding and truncation
rules apply.

GraphicString Type

Transparent character set of graphic characters only.

External Form - Input

As supplied.

External Form - Output

As supplied.

Local Form and Behavior

On input data is stored as supplied. Normal string padding and truncation
rules apply.

VisibleString Type

Transparent character set of graphic characters only.

External Form - Input

As supplied.

External Form - Output

As supplied.

Local Form

On input data is stored as supplied. Normal string padding and truncation
rules apply.

Type Conversion for MDO Assignment

306 Network Control Language Programming Guide

GeneralString Type

Transparent character set of both graphic and control characters.

External Form - Input

As supplied.

External Form - Output

As supplied.

Local Form

On input data is stored as supplied. Normal string padding and truncation
rules apply.

Type Conversion for MDO Assignment

Normally, when assigning data from one MDO component to another, the type
of each component is identical so that data can be moved unchanged. However,
if the target component is not of the same type as the source component type
conversion is automatically performed where possible. Hence the result of the
following assignment depends on the type of a.b.c and x.y.z:

&ASSIGN MDO=a.b.c FROM MDO=x.y.z

When assigning into an MDO from external data, or from NCL variables the data
type of the input can be nominated for the MDO assignment. If the MDO
component is not of this type then type conversion is performed, for example:

&ASSIGN MDO=a.b.c TYPE=INTEGER FROM DATA=123

&ASSIGN MDO=a.b.c TYPE=HEXSTRING FROM VARS=HEXDATA

Similarly, when assigning data from an MDO into NCL variables, the data type of
the output can be nominated for the MDO assignment, for example:

&ASSIGN VARS=ABC FROM MDO=a.b.c TYPE=BITSTRING

Valid type operands are:

■ BOOLEAN or BOOL

■ INTEGER or INT

■ BITSTRING or BIT

■ OCTETSTRING or OCTET

Type Conversion for MDO Assignment

Chapter 14: Using Mapping Services 307

■ NULL

■ OBJECTIDENTIFIER or OBJECTID or OID

■ OBJECTDESCRIPTOR or OBJECTDESC or ODESC

■ REAL

■ HEXSTRING or HEX

■ NUMERICSTRING or NUMERICSTR or NUMSTR

■ PRINTABLESTRING or PRINTABLESTR or PRTSTR

■ IA5STRING or IA5STR

■ UTCTIME or UTC

■ GENERALIZEDTIME or GTIME

■ GRAPHICSTRING or GRAPHICSTR or GRAPHSTR

■ VISIBLESTRING or VISIBLESTR or VISSTR

■ GENERALSTRING or GENERALSTR or GSTR

Type conversion is attempted regardless of the source and target types. Thus,
depending on the actual value of the source data and target type, some
assignments produce valid results, while others produce a type check.

The ASN.1 types can be classified into three groups:

■ Graphic-oriented types:

OBJECT IDENTIFIER, OBJECT DESCRIPTOR, UTCTime, GeneralizedTime,
NumericString, PrintableString, TelexString, VideotexString,
IA5String,GraphicString, VisibleString, and GeneralString.

■ Numeric-oriented types:

BOOLEAN, INTEGER, BIT STRING, REAL, and ENUMERATED.

■ Transparent types:

OCTET STRING, HEX STRING, SEQUENCE (OF), SET (OF), and ANY.

The following table shows the general rule for type conversion. The table lists
the formats of the source data value used for assignment into the target type.

SOURCE\\TARGET Graphic-
oriented

Numeric-
oriented

Transparent

Graphic-oriented External form External form Local form

Type Conversion for MDO Assignment

308 Network Control Language Programming Guide

SOURCE\\TARGET Graphic-
oriented

Numeric-
oriented

Transparent

Numeric-oriented External form Local form Local form

Transparent Local form Local form Local form

Note: For more information about the acceptable external and local form values
for each type, see the Network Control Language Reference Guide.

Graphic-oriented Source Type

Where the target is one of the graphic- or numeric- oriented types, the external
form output of the source data is assigned to the target as though it was
external input. The following is an exception: Conversion between UTCTime and
GeneralizedTime results in the insertion/stripping of the century value (insert 19
if yy greater than 50, otherwise insert 20).

Where the target is one of the transparent types, the local form of the source
data is assigned to the target unchanged; that is, the local form of the source
data becomes the local form of the target. However, the external outputs of the
source and target can differ depending on their respective types. In either case,
a type check results if the data is invalid for the source or target types.

Example: Graphic-oriented Source Type

&ASSIGN MDO=a.b.utc TYPE=GTIME DATA=19921012145000+1000

 -* target type is UTCTime

&ASSIGN VARS=RESULT FROM MDO=a.b.utc

 -* returns &RESULT = 921012145000+1000

&ASSIGN MDO=a.b.num DATA=0123

 -* source type is NumericString

&ASSIGN VARS=RESULT FROM MDO=a.b.num TYPE=REAL

 -* output type is REAL

 -* returns &RESULT = +.123000000000000E+03

&ASSIGN MDO=a.b.graph DATA=ABCD

 -* source type is GraphicString

&ASSIGN MDO=a.b.hex FROM MDO=a.b.graph

 -* target type is HEX STRING

&ASSIGN VARS=RESULT FROM MDO=a.b.hex

 -* returns &RESULT = C1C2C3C4

Type Conversion for MDO Assignment

Chapter 14: Using Mapping Services 309

Numeric-oriented Source Types

Where the target is one of the numeric-oriented or transparent types, the local
form of the source data is converted to the local form of the target. The source
and target local form values are equal in most cases, although their external
form output can differ depending on their respective types. The following,
however are exceptions:

■ If the source type is REAL and the target type is either BOOLEAN, INTEGER
or ENUMERATED, then floating point integer value conversion (with
rounding) is performed on the local form of the source data. Similarly,
integer to floating point conversion is performed if the process is reversed.

■ Conversion of local form source data to a BOOLEAN type target, results in
X'00' (FALSE) if the source is non-zero. Otherwise, the target local form is
converted to X'01' (TRUE).

Where the target is one of the graphic-oriented types, the external form output
of the source data is assigned to the target as though it was external input.

In either case a type check results if the data is invalid for the source or target
types.

Example: Numeric-oriented Source Types

&ASSIGN MDO=a.b.int TYPE=REAL DATA=99.99

 -* target type is INTEGER

&ASSIGN VARS=RESULT FROM MDO=a.b.int

 -* returns &RESULT = 100 (value rounded)

&ASSIGN MDO=a.b.bool DATA=TRUE

 -* source type is BOOLEAN

&ASSIGN VARS=RESULT FROM MDO=a.b.bool TYPE=HEX

 -* output type is HEX STRING

 -* returns &RESULT = 01 (that is, TRUE)

&ASSIGN MDO=a.b.bit DATA=11101

 -* source type is BIT STRING

&ASSIGN MDO=a.b.num FROM a.b.bit

 -* target type is NumericString

&ASSIGN VARS=RESULT FROM MDO=a.b.num

 -* returns &RESULT = 11101000

Type Conversion for MDO Assignment

310 Network Control Language Programming Guide

Transparent Source Types

Regardless of the target type, the local form of the source data is assigned to
the target unchanged, that is, the local form of the source data becomes the
local form of the target.

An exception is that the conversion of local form source data to a BOOLEAN
typed target results in local form X'00' (FALSE) if the source is non-zero.
Otherwise, the target local form is converted to X'01' (TRUE).

The external outputs of the source and target values can differ, depending on
their respective types.

A type check results if the data is invalid for the source or target types.

Example:Transparent Source Types

&ASSIGN MDO=a.b.prt TYPE=OCTET DATA=AB.C

 -* target type is PrintableString

&ASSIGN VARS=RESULT FROM MDO=a.b.prt

 -* returns &RESULT = AB.C

&ASSIGN MDO=a.b.hex DATA=FF

 -* source type is HEX STRING

&ASSIGN VARS=RESULT FROM MDO=a.b.hex TYPE=INT

 -* target type is INTEGER

 -* returns &RESULT = -1

&ASSIGN MDO=a.b.any DATA=DEFG

 -* source type is ANY

&ASSIGN MDO=a.b.hex FROM MDO=a.b.any

 -* target type is HEX STRING

&ASSIGN VARS=RESULT FROM MDO=a.b.hex

 -* returns &RESULT = C4C5C6C7

Chapter 15: NDB Concepts 311

Chapter 15: NDB Concepts

Note: Familiarity with standard UDBs is assumed, including the use of the &FILE
verbs, and the UDBCTL command.

This section contains the following topics:

What Is an NDB? (see page 312)
NDB Structure (see page 315)
Record ID (see page 317)
Alerts for VSAM Monitoring (see page 318)
NDB Data Formats (see page 319)
Null Values and Null Fields (see page 320)
NDB Transaction Management: Database Protection (see page 322)
NDB Journaling (see page 323)
How to Respond to an Alert for File Size or File Full (see page 324)
Fix a Corrupted NDB (see page 325)

What Is an NDB?

312 Network Control Language Programming Guide

What Is an NDB?

NDBs let NCL programmers define, create, update, and search a database based
on a collection of user-defined fields. NDBs support information storage and
retrieval through the CA NetMaster and SOLVE functions. Your product provides
this enhanced database manipulation facility for NCL procedures.

For example, a SHOW NDB=ALL command typically shows up to five NDBs,
depending on the product.

This facility allows data to be stored, to be retrieved or updated later, in a
formatted database known as a NDB. The NDB format is more powerful than
standard VSAM data sets.

Note: In this guide, the term database manager refers to the assembler code
that controls NDBs. There is a database manager for each active NDB.

An NDB is a formatted VSAM key-sequenced data set (KSDS). It should be
accessed only by using the &NDB verbs. An NDB supports the following:

■ Multiple keys, without any VSAM alternate indices

■ Logical record size not limited by the defined VSAM record size

■ Data access by named field, not relative field position in a record (as in a
UDB)

■ Transaction integrity, guaranteeing a non-corruptible file

■ Multiple users, without VSAM string limitations

■ Different data types, including character, numeric, floating point,
hexadecimal, and date format data. The Database Manager prevents data
that is not in the defined format and invalid data, from being stored (for
example, the value ABC could not be stored in a field defined as numeric).

■ An extremely powerful search capability, that makes full use of keys
wherever possible, but does not require any keying of the search
arguments.

■ Null field support, which allows multiple record types to co-exist in a single
NDB.

■ Forward recovery facilities, minimizing the risk of data loss.

What Is an NDB?

Chapter 15: NDB Concepts 313

Work with NDBs

You can use NDB commands to start, stop, reset, and lock (for example to
prevent access while running a backup), an NDB. For more information, see the
Online Help.

You can also use NCL verbs to insert or delete field definitions, add, delete,
update and retrieve records, and to search an NDB for all records that match a
supplied set of criteria. These verbs also allow access to the database and field
level definitions, making it easy to provide utility procedures that need only be
told the name of the NDB to be accessed.

Uses of NDBs

An NDB can be used in any application where a flexible data storage mechanism
is required. Applications that have complex retrieval needs are especially suited
to NDBs. The ease of access of data makes such things as selection list scrolling
very easy to perform.

NDBs are not suited to applications that have a large amount of high-speed
record addition, update, or deletion.

Differences Between NDBs and UDBs

Both NDBs and UDBs are always VSAM data sets. An NDB is always a VSAM
KSDS, whereas a UDB can be either a KSDS or an ESDS (a non-keyed VSAM data
set).

The UDBCTL command is used to open a VSAM data set for access by the Virtual
File Services (VFS). Thus, although an NDB should not be used as a UDB, the
UDBCTL command is still used to open and close it.

Important! Do not access an NDB using the &FILE verbs, as if it were a UDB. If
any access is done in this way, the NDB can be corrupted.

The following table summarizes the differences between UDBs and NDBS:

UDB NDB

Can be a VSAM KSDS or ESDS. Always a VSAM KSDS.

If KSDS, key length can be from 1 to
255.

Key length must be from 16 to 255.

What Is an NDB?

314 Network Control Language Programming Guide

UDB NDB

VSAM maximum data length can be
any valid value.

VSAM maximum data length has a
minimum value restriction

Data is built or accessed by relative
position in a record.

Data is accessed by field name.

Record length is limited by either the
VSAM record length or the maximum
NCL statement length after
substitution.

Record length is independent of the
VSAM record length or NCL statement
length. The length is logically limited
by the restriction of the 32 KB named
fields.

Only one, unique, sequence key is
provided, unless VSAM alternate
indexes are used.

There is no requirement for any key.
There can be any number of keys, and
they need not be unique. There can,
optionally, be a unique sequence key.

Multiple record structures to support
multiple keying, and so on. Have no
update integrity. A system failure can
logically or physically corrupt the
database.

Internal update journaling guarantees
integrity of the multiple VSAM record
structures used to support the NDB
features.

Concurrent access can result in VSAM
string waits or lockouts.

Concurrent access has no restrictions.

Complex searching is slow, as the
logic must be implemented in NCL.

Complex searching runs at assembler
speed. Keys are used whenever
possible.

Multiple positioning (for sequential
retrieval) by one NCL procedure is not
possible.

An NCL procedure can have any
number of simultaneous positions in an
NDB.

NDB Structure

Chapter 15: NDB Concepts 315

UDB NDB

UDBs are accessed using the
&FILEOPEN verb. The first &FILE
OPEN for a given UDB performs a
logical open for the NCL process.
Because the &FILE GET and similar
verbs have no way of specifying the
UDB they refer to, the last executed
&FILE OPEN statement sets the UDB
for these statements. Thus, &FILE
OPEN has a double meaning.

NDBs are accessed using the
&NDBOPEN verb. Each NDB accessed
must be opened by an &NDBOPEN
statement. The other &NDBxxx verbs
allow specification of the database
name and there is no need for
repeated &FILE OPEN-like use of the
&NDBOPEN verb.

Data in a UDB has no associated type.
No validity checking is performed on
the stored data.

Data in an NDB has a type. Invalid data
(for example, nonnumeric for a
numeric field) cannot be stored.

When an NDB is active, VFS prevents any access to it as a UDB. For example, if
an &FILEID statement refers to an active NDB, it causes the NCL procedure to
terminate with an error message.

Similarly, if an NDB is being accessed as a UDB, it cannot be accessed by NDB
commands or &NDB statements.

NDB Types

The RAMDB (Automation Database File) and RSDB (Network Model File) are
stable NDBs that rarely require attention; however, they should be backed up
periodically to secure changes. For example, changes to resource definitions and
Automation Services processes are stored in the RAMDB.

The Alert History File ($ALERTH), File Transfer Event Database (EVNTDB), and
IPLOG Event History File (IPLOG) are used to store data cumulatively for
searching, which is why they have user-defined parameters such as the number
of days to keep data.

NDB Structure

The internal structure of an NDB is described in this section. The records are
described in ascending VSAM key sequence.

NDB Structure

316 Network Control Language Programming Guide

Control Record

The first record (key is always all binary 0) in an NDB is a control record. It
identifies this data set as an NDB, and contains other control information (for
example, the number of defined fields and the number of records). This record
is inserted when the NDB CREATE command formats an NDB. It is updated by
other NDB commands and NCL statements. It also contains the domain ID (JCL
parameter NMD ID) and NDB name. These are used to prevent concurrent
update access by more than one region.

Journal Control Record

This record, also inserted when the NDB is formatted, is used to manage the
NDB transaction journal (see page 322).

Journal Data Records

These records are used to journal update activity, to allow update retry after a
system failure. There are n of these records, the number being determined
either by the value of the NDBLOGSZ SYSPARM when the NDB CREATE
command was issued for the NDB, or by the LOGSIZE parameter on the NDB
CREATE command.

Field Definition Records

These records, one for each field defined on the database, contain information
about the fields (for example, the field name, data format, and key options).

Key Statistics Records

These records, one for each field, contain key statistics information collected
during an NDB ALTER BLDX or an NDB START KEYSTATS run.

Key Records

For fields defined as keyed (except a sequence key), these records contain the
key values, and, for each key value, a list of the record IDs of records containing
that value.

Record ID

Chapter 15: NDB Concepts 317

RID-Sequence Key Records

For NDBs defined with a sequence key, these records act as a link record, keyed
by record ID, and contain the sequence key value of the record.

Data Records

These records hold the actual data for each record stored in the NDB. They are
keyed by record ID, or by sequence key value (if a sequence key is defined for
this NDB). If a given logical record has more data than will fit into a single VSAM
record, it is automatically spanned across multiple records.

Record ID

Each record in an NDB is assigned a Record ID (RID), which is unique identifier of
a logical record in an NDB.

Note: All dynamic data NDBs do not require reorganization to reclaim free
space.

The RID is assigned by the Database Manager, when a record is added to an
NDB. The RID is a number, from 1 to 1 billion (actually, 2**30 - 1), that uniquely
identifies this record in the NDB. All internal access to a record is made by
providing the RID. The RID assigned to a record never changes, and (currently) is
not reassigned to another record when a record is deleted.

Note: The RID cannot be assigned by the user. The assigned value is made
available to the NCL process that inserts a record via the &NDBRID system
variable.

The RID is necessary, as an NDB does not need to have a sequence key (or any
key, for that matter), and a way of uniquely identifying a record is always
required.

Whenever a record is retrieved by an &NDBGET NCL statement, the RID of that
record is returned in &NDBRID. The record could have been retrieved by a key,
or from an &NDBSCAN result list, but the RID is always made available, so that a
following &NDBUPD or &NDBDEL statement can refer to the correct record.

Alerts for VSAM Monitoring

318 Network Control Language Programming Guide

RID Reuse

RID reuse accumulates ranges of unused RIDs from deleted records during a
KEYSTATS run, which is performed automatically during the daily old record
deletion process for NDBs such as the Alert History File. By reusing RIDS, free
space in the VSAM cluster is also reused.

Note: Do not reorganize NDBs when RID reuse is active.

You can find the messages in the log output from an $ALERTH daily purge by
looking at the purge or delete time for the file in the Customizer Parameter
group (/PARMS), and then locating that time in the log using the T hh.mm
command.

Alerts for VSAM Monitoring

You can create alerts for VSAM files allocated to your CA Mainframe Network
Management product region. This includes the NDBs because they use the same
VSAM API. Event Distribution Services (EDS) creates events for file open, close,
allocate, unallocated, and so on.

In addition, you can also use the following events that are triggered by VSAM
return and feedback codes:

■ $$SYS.FILE.EOV for End Of Volume (new data or index extent)

■ $$SYS.FILE.CA.SPLIT for a VSAM control area split (not used by the VSAM
monitor)

■ $$SYS.FILE.FULL for a file full condition

■ $$SYS.FILE.SHORTAGE for a string or buffer shortage

■ $$SYS.FILE.ERROR for a VSAM error condition

These events are trapped by the VSAM monitor and alerts are raised if required.
Log files and files opened for input are excluded from alerts related to file size
because log files wrap and input files cannot be extended by the region's
activity.

Alerts for String / Buffer shortage or file extensions are optional. If you do not
want the IPLOG or EVNTDB to be automatically resized, you should clear the file
extension severity count; otherwise, resize is attempted when the Extents count
is exceeded.

NDB Data Formats

Chapter 15: NDB Concepts 319

NDB Data Formats

An NDB supports the following data formats:

CHAR

Data is provided, and stored, as a character string. NCL restricts character
data to printable characters. The maximum length of a character field is 255
characters if not keyed, or (VSAM key length - 8) if keyed. Character fields
collate (for keying, or sorting in a scan) on ascending EBCDIC value. Trailing
blanks are not significant and are removed from stored data. The option to
automatically make data upper case is available. Alternatively, data can be
stored as lower case but searched as if it were upper case.

NUMERIC

Data is provided as an optionally signed number, from -2,147,483,648 to
+2,147,483,647. Numeric fields collate on ascending binary value (-10
before -5 before 0 before +5 before +10). The minimum VSAM key length
for an NDB guarantees that numeric data can always be keyed.

HEX

Data is provided as an even number of hexadecimal characters (0-9, A-F, or
a-f). Trailing blanks are eliminated from the value. Trailing zeros are
significant, and are stored. The maximum length of the character
representation of a HEX field is 254, giving a maximum binary length of 127.
If keyed, the maximum character representation length is ((VSAM key
length - 9) * 2). A null-valued HEX field can be represented by a character
value of one blank. HEX fields collate on ascending binary value, with values
that are equal except for the number of trailing zeros collating on increasing
length.

DATE

Data is provided in one of several formats, controlled by the user and/or
system language code, and the current &NDBCTL DATEFMT setting.
Basically, the provided value is in YYMMDD format. The data is stored
internally as packed digits in the form YYMMDD. Date fields collate on
ascending date value. The minimum VSAM key length for an NDB
guarantees that date data can always be keyed.

As the DATE format does not include a century, CA recommends use of the
CDATE format instead.

Null Values and Null Fields

320 Network Control Language Programming Guide

CDATE

Data is provided in one of several formats, controlled by the user and/or
system language code, and the current &NDBCTL DATEFMT setting. The
data is stored internally as a 3-byte binary number, being the numbers of
days from 1/1/0001.

TIME

Data is provided in HHMMSS.TTTTTT format (the decimal point and fraction
can be truncated or omitted). The data is stored internally as a 5-byte binary
number, being the number of microseconds since midnight.

TIMESTAMP

Data is provided in YYYYYMMDDHHMMSS.TTTTTT format. The data is stored
internally as a concatenation of a 3-byte CDATE and 5-byte TIME.

FLOAT

Data is provided as a floating point number. It is stored internally in IBM
8-byte normalized floating point format. The numbers are stored to 15
significant digits and with an exponent of +70. Floating point fields are
collated on ascending numeric value.

Null Values and Null Fields

One of the most powerful features of NDBs is the use of null fields, an
understanding of which is essential to the effective use of an NDB.

An NDB is a field-oriented database. Data is always accessed by field name.
Other databases may have the concept of a record or group, being a collection
of fields, that can be accessed by the name of the record or group. An NDB
record is the actual, complete record, as logically accessed by RID.

At first, then, it might seem that an NDB can contain only one record-type,
where record-type corresponds to a supplier, an order, or a customer record,
for example. This is not the case. In fact, an NDB can contain almost any number
of logical record types, each of which can be accessed separately. To achieve
this, an NDB uses the concept of the null field. A null field is simply a defined
field that is not present in a record.

The number of defined fields in the control record includes the number of null
fields and each null field has a field definition record. However, the field is not
physically present in the record. This is clearly not the same as a field that is
present, but contains a null value (for example, blank).

Null Values and Null Fields

Chapter 15: NDB Concepts 321

Even if the field is defined as keyed, a null field is never keyed. Thus, any
attempt to access by using keys will never retrieve a record that has that field
null.

For any data format, a field can have one of the following logical values:

■ Not present (that is, null field).

■ Present, but null-valued. For a character field, this is defined as all blank. For
a numeric or floating point field, this is defined as 0, for a hexadecimal field,
this is defined as all blank (stored as present with a length of 0), and for a
date field, this is defined as YYMMDD = 000000 (the only invalid date value
allowed).

■ Present, with a value other than the null value described previously.

In NCL terms, the following statements illustrate the three states of a field:

&VALUE =

Sets &VALUE to not-present (the actual variable is deleted from the NCL
procedure's variable pool).

&VALUE = &SETBLNK 1

Sets &VALUE to present, with the value of one blank.

&VALUE = value

Sets &VALUE to present, with the value of value.

Rules for Null Fields

There are several rules regarding null fields:

■ A null field is never keyed. Thus, access using keys for that field name will
never retrieve a record with that field a null field.

■ A null field never matches anything, not even another null field. For
example, none of the following &NDBSCAN statements will retrieve the
entire database, if field NAME is null in some records.

&NDBSCAN dbname FIELD NAME EQ VALUE 'FRED' OR +

 FIELD NAME NE VALUE 'FRED'

&NDBSCAN dbname FIELD NAME EQ FIELD NAME

In the second example, comparing a field to itself in a record, it might seem
that some records should be selected. The rule about null fields is still
honored in this case.

NDB Transaction Management: Database Protection

322 Network Control Language Programming Guide

■ You cannot retrieve a record with null fields. Retrieving a record with null
fields causes the NCL variables receiving the requested null fields to be
deleted (that is, set to null).

■ A null field can be indicated on an &NDBADD statement by omitting the
fieldname = fieldvalue clause for that field, or, on an &NDBADD or an
&NDBUPD statement, by using a currently undefined (that is, null) NCL
variable as the fieldvalue, for example, FIELDX = &NULL, or by using the
syntax FIELDX NULL.

■ The only way that records containing a particular null field can be selected
in an &NDBSCAN is to use the PRESENT and ABSENT or IS [NOT] NULL
operators. These operators allow records to be selected that contain the
nominated field (PRESENT) or records that do not contain the nominated
field (ABSENT).

Using null fields, the previous example of a database containing supplier, order,
and customer records can be built by inserting only supplier fields for supplier
records, order fields for order records, and customer fields for customer
records. The records are now disjoint. A retrieval by CUSTNO, for example,
would only retrieve records containing the CUSTNO field, and so on for supplier
and order.

When defining fields in an NDB, a field can be made mandatory by specifying
NULLFIELD=NO.

NDB Transaction Management: Database Protection

An NDB is protected against system failures that might occur when an update to
the VSAM data set is in progress. Database record locking prevents data
corruption caused by multiple users accessing the same record simultaneously.

If it is possible for more than one user to access an NDB record at once, use the
&LOCK verb (see page 251) to ensure exclusive access to the record while it is
being accessed. That is, perform an &LOCK on a record before any operation
that accesses that record proceeds. If another user subsequently accesses the
record, any modifications made by the second user do not proceed until the
first accessing procedure concludes and the record ceases to be locked.

NDB Journaling

Chapter 15: NDB Concepts 323

Protection against system failures is achieved as follows:

■ A preformatted journal area is built when the NDB is created. This area
consists of a journal control record, and n journal records.

■ When an operation that involves updating the NDB starts, the journal area
is used to record the updates, but they are not actually performed.

■ When the updates are complete, the journaled updates are used to
physically update the data set. Before this starts, a flag is set in the journal
control record, indicating an update apply procedure is in progress, and the
journal control record, and all journal data records are force-written to the
VSAM data set.

■ If the update apply completes successfully, then buffers are flushed, the
journal control record flag is reset, and the journal control record is
rewritten.

■ If the update apply is interrupted by a system failure, then, when the NDB is
next activated, the journal control record flag indicates that an update apply
was in progress at the time of the failure. The entire update apply is redone
(ignoring errors due to duplicate or already deleted records). Thus database
integrity is assured.

■ Physical errors on the VSAM data set (for example, out of space) are
handled in the same way. Once the data set has been copied to a larger
version, the reapply works in the same way.

NDB Journaling

In addition to the preformatted journal area kept within an NDB, an external
journal can be created. This journal allows:

■ Continuous availability of an NDB that cannot regularly be stopped for
backups

■ Recoverability of an NDB to the time of last update, even in the event of
physical data set failure

To enable journaling on an NDB, specify the JOURNAL operand on the NDB
START command. This operand causes the after images of all NDB record
updates to be written to the journal.

Note: Before images are not kept; therefore data set back out is not possible.

How to Respond to an Alert for File Size or File Full

324 Network Control Language Programming Guide

Continuous Availability

If your NDB cannot be stopped for backup because of availability requirements,
you can use the journal to keep a current backup copy. A backup copy is created
once and the journal is applied to it each time the journal is swapped.

Note: A journal swaps if a JOURNAL SWAP command is issued, or if the current
journal runs out of space.

Use the batch forward recovery utility (UTIL0010) to apply the journal. The
name of the journal to be applied can be determined using the &ZJRNALT
system variable. The sample batch forward recovery JCL ($NDUT010) is available
in the distribution library and must be tailored using the installation data set
names.

Whenever a journal swap occurs, an NCL procedure is started in the BSYS
environment to assist in the automation of forward recovery. The name of this
procedure is specified using the SYSPARMS JRNLPROC command (default is
$NDJPROC). Use this procedure to submit your NDB forward recovery JCL.

NDB Recovery

If you intend to continue taking regular backups of your NDBs, then you can
choose to apply journals only in the event of physical loss of an NDB. When
taking regular backups of your NDB you only need to backup your journal data
sets whenever a journal swap occurs. The NDB can then be restored from a
backup, applying all journals since backup in sequence.

How to Respond to an Alert for File Size or File Full

When recovering a full or near-full NDB to a larger file, you must disconnect the
old and new files completely from the region during the REPRO of old file
records into a new, empty file so that there are no problems with control record
corruption.

Note: The event data is not recorded during this time; however, the automatic
resize of IPLOG and EVNTDB does cache data during the resize.

Fix a Corrupted NDB

Chapter 15: NDB Concepts 325

Fix a Corrupted NDB

An NDB may become corrupted by an NDB full or region cancelled event. To
recover the data, you must use the NDB ALTER OPT=BLDX command to rebuild
the indexes.

Note: This procedure e following steps are from the IPLOG file and apply to all
NDBs.

To fix a corrupted NDB

1. Create a work file. The size must relate to the number of records in the
NDB.

The following shows some sample JCL:

//DEFWRK EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DELETE (hlq.TEST.NDBWORK) CL

 DEFINE CLUSTER (NAME(hlq.TEST.NDBWORK) -

 MGMTCLAS(DEFAULT) -

 STORCLAS(NMDPOOL) -

 INDEXED -

 RECORDS(1000000 100000) -

 SPEED -

 SHAREOPTIONS(2 3) -

) -

 DATA (NAME(hlq.TEST.NDBWORK.D) -

 CONTROLINTERVALSIZE(4096) -

 RECORDSIZE(1017 4089) -

 FREESPACE(0 0) -

 KEYS(4 0) -

) -

 INDEX (NAME(hlq.TEST.NDBWORK.I) -

 CONTROLINTERVALSIZE(1024))

/*

2. Issue the following command from OCS to allocate the work file to the
region:

ALLOCATE DD=NDBWORK DSN=hlq.TEST.NDBWORK DISP=SHR

Issue the following command to open the work file as a VSAM file.

UDBCTL OPEN=NDBWORK STRNO=3 BUFNI=5 BUFND=6

3. Issue the following command to remove the NDB bad-locked status:

NDB PURGE IPLOG

Fix a Corrupted NDB

326 Network Control Language Programming Guide

4. Issue the following command to stop the NDB to prevent access:

NBD STOP IPLOG IMM

5. Issue the NDB ALTER command to check the indexes, as follows:

NDB ALTER IPLOG OPT=CHKX DB WORK=NDBWORK DETAIL=YES SORT=100000

Minimizing I/O on the work file by specifying the maximum value for sort
memory reduces execution time.

6. Issue the following command to close and free the work file:

UDBCTL CLOSE=NDBWORK

UNALLOC DD=NDBWORK

7. Check the CHKX, and if it shows an error, rebuild the indexes by redefining
the work file to empty it, and then use the BLDX option of NDB ALTER, by
issuing the following command:

NDB ALTER IPLOG OPT=BLDX DB WORK=NDBWORK DETAIL=YES SORT=100000

Minimizing I/O on the work file by specifying the maximum value for sort
memory reduces execution time.

8. Reallocate the NDB by actioning the IPFILES - TCP/IP File Specifications
Customizer Parameter Group.

If the NDB ALTER BLDX action fails, and needs to be rerun, the work file
must be unallocated and redefined.

Chapter 16: NetMaster Database Administration 327

Chapter 16: NetMaster Database
Administration

Note: Familiarity with standard User Databases (UDBs) is assumed, including the
use of the &FILExxx verbs, and the UDBCTL command. A knowledge of VSAM,
the IDCAMS utility program, and JCL (for the relevant operating system) is also
assumed.

This section contains the following topics:

How to Create an NDB (see page 327)
Delete an NDB (see page 334)
Alter Field Definitions in an NDB (see page 335)
Back Up an NDB (see page 338)
Restore an NDB (see page 338)
Monitor NDB Activity (see page 339)
Monitor NDB Performance (see page 340)
Multiple System Access to an NDB (see page 341)
How to Implement NDB Journaling (see page 342)

How to Create an NDB

Perform the following tasks to create an NDB:

1. Define the VSAM data set (see page 328)

2. Calculate the key length (see page 328)

3. Calculate the record length (see page 329)

4. Allocate the VSAM data set (see page 330)

5. Open the VSAM data set (see page 330)

6. Create the NDB (see page 331)

7. Start the database (see page 332)

8. Insert field definitions (see page 332)

9. Load initial data (see page 333)

Read the complete description of each task carefully before performing the
task.

How to Create an NDB

328 Network Control Language Programming Guide

Define VSAM Data Set

Use IDCAMS to define a VSAM KSDS. The following parameters are required:

INDEXED

Indicates a KSDS

KEYS (len 0)

key length (see Task 2)

RECORDSIZE (avg max)

Indicates average and maximum record size (see Task 3).

Other parameters, such as SPEED, REPLICATE, IMBED, can be used at your
discretion.

Do not use SPANNED. Logical records longer than the VSAM data record length
are handled automatically.

The REUSE parameter can be used, but, for NDBs used in a production
environment, it is not recommended, as omission prevents the accidental
emptying of an NDB by use of the UDBCTL OPEN RESET command.

Calculate Key Length

Calculate the key length to use for the NDB as follows:

L1 =

Longest desired length for any keyed CHAR field

L2 =

Longest desired length for any keyed HEX field (as displayable characters)

L3 =

Maximum of (L1 + 8), (L2 / 2 + 9), and 16

KL =

Minimum of L3, and 255.

How to Create an NDB

Chapter 16: NetMaster Database Administration 329

Calculate Record Length

Calculate the average and maximum record lengths as follows:

Average Record Length:

■ Greater than the VSAM key length

■ The approximate size of a stored data record. A stored data record needs:

– KL (from above) +10 +

– 3 times number of present fields +

– 4 times number of present numeric fields +

– 3 times number of present date or cdate fields +

– 8 times number of present floating point or timestamp fields +

– 5 times number of present time fields +

– Total number of characters in present hexadecimal fields / 2

– Number of characters in present character fields (less trailing blanks) +

Note: A data record can span multiple VSAM records. If there are some records
in your design that can be very large, but most are short, calculate the sizes
using most common record structure.

Maximum Record Length:

■ A maximum of 274 + 2 times the VSAM key length

■ Average record length (calculated above) + VSAM key length + 6

VSAM requires the maximum record length to be less than the data CI size
less 7. Use a figure that leaves minimum wastage in a CI.

The only VSAM records in an NDB that have the maximum VSAM record length
are the NDB transaction data records. These are inserted during processing of
the NDB CREATE command.

How to Create an NDB

330 Network Control Language Programming Guide

Example: VSAM Definition

This example of a definition is a good starting point for your own definitions.

DELETE clustername CL

DEFINE CLUSTER(NAME(clustername) -

 VOL(volume) -

 INDEXED-

 SHAREOPTION(2 3) -

 DATA (NAME(dataname)-

 KEYS(60 0)-

 CISZ(4096)-

 RECSZ(200 1020)-

 FSPC(20 20))-

 INDEX (NAME(indexname)-

 CISZ(2048))

Allocate the VSAM Data Set

Use the ALLOCATE command to dynamically allocate the data set to an active
region:

ALLOC DSN=clustername DD=dbname DISP=OLD

Open the VSAM Data Set

Use the UDBCTL command to open and initialize the data set. Whether the
database will use the VSAM LSR pool depends on the options specified on the
UDBCTL command.

By convention, the database name is the same as the DD name (z/OS) or file
name (z/VM).

If you do not want the database to use the LSR pool, issue the following UDBCTL
command:

UDBCTL OPEN=dbname ID=* STRNO=7 BUFNI=10 BUFND=10

The values for STRNO, BUFNI, and BUFND are the suggested defaults.

The STRNO value should be 3 + (value of NDBSUBMX SYSPARM - 1, times 2). A
lower value can lead to string space being dynamically acquired by VSAM (z/OS)
or string waits (z/VM) if several &NDBSCAN statements are executing
concurrently.

How to Create an NDB

Chapter 16: NetMaster Database Administration 331

If you want the database to use the LSR pool, issue the following UDBCTL
command:

UDBCTL OPEN=dbname ID=* LSR

Use the LSRPOOL command to define the LSR buffer pool sizes and the number
of buffers for each size. LSR is the recommended way of running an NDB.

You might want to use deferred I/O when running the NDB. Deferred I/O
involves sharing of buffers in between requests and enhances performance but
possibly at the expense of integrity. Deferred I/O is not recommended when
running an NDB in an online transaction update environment.

If you want to run deferred I/O you must use the DEFER option of the UDBCTL
command to open the file:

UDBCTL OPEN=dbname ID=* LSR DEFER

You must also use the DEFER option on the NDB START command. For more
information about the NDB START command, see the Online Help.

Create the NDB

To do this, issue the NDB CREATE command:

NDB CREATE dbname [LOGSIZE=n] [LOADMODE] [LANG=lc]

The NDB CREATE command formats the UDB into an NDB by inserting control
records that identify it as an NDB, and builds journal records for transaction
management.

The nominated data set (UDB, and so on) cannot be created into an NDB unless
the data set is empty and it meets the requirements such as KSDS, key length,
and record length.

The NDB can be created as language-specific by specifying the LANG= operand.
The uppercase translation table for the language specified is then used for all
uppercase processing.

How to Create an NDB

332 Network Control Language Programming Guide

Specify the number of log blocks to format with the LOGSIZE parameter. If you
want to fast-load data, use the LOADMODE option to put the database into load
mode.

Following the NDB CREATE command, the data set is now formatted as an NDB,
with no field definitions and no data records. From this point on, the other NDB
command options and the &NDBxxx verbs can refer to it.

Start the Database

To allow NCL access to the database, the NDB START command must be used to
keep the database active:

NDB START dbname [DEFER | NODEFER] [LOADMODE]

If the database is to be bulk-loaded (described in Task 9), consider using the
DEFER option of the NDB START command. This option tells the database
manager not to flush buffers after each update command (including &NDBADD,
&NDBDEL, &NDBUPD), which improves performance at the expense of integrity.
The DEFER option of the NDB START command is effective only if the database
was opened with the UDBCTL command using the LSR and DEFER options. The
LOADMODE option can be used to indicate that bulk-loading is to occur.

Insert Field Definitions

An NDB cannot be used without field definitions. Field definitions can be added
to or deleted from an NDB, using the NDB FIELD command at any time. Just
after the successful completion of an NDB CREATE followed by an NDB START is
a good time to add field definitions.

Example: Insert Field Definitions

The following example shows how to add field definitions:

NDB FIELDdbname ADD=SURNAMEFMT=C KEY=Y +

NULLFIELD=N NULLVALUE=N

NDB FIELDdbname ADD=FIRSTNAMEFMT=C KEY=N

NDB FIELDdbname ADD=DOBFMT=D KEY=N

NDB FIELDdbname ADD=ADDR1FMT=C KEY=N

NDB FIELDdbname ADD=ADDR2FMT=C KEY=N

NDB FIELDdbname ADD=ADDR3FMT=C KEY=N

NDB FIELDdbname ADD=ADDR4FMT=C KEY=N

NDB FIELDdbname ADD=SEXFMT=C KEY=N

NDB FIELDdbname ADD=NAME

How to Create an NDB

Chapter 16: NetMaster Database Administration 333

Note: The definitions could also have been added by using the &NDBDEF verb.

If the database is to have a sequence key, then the definition for it must be
added first. A sequence key is defined by specifying KEY=SEQUENCE (can be
abbreviated to KEY=S) on the field definition. A sequence key is forced to have
the attributes UPDATE=NO, and NULLFIELD=NO. Records must always have a
unique value for the sequence key field (like KEY=UNIQUE). A sequence key field
definition cannot be deleted.

Load Initial Data

If the database needs to have data loaded into it (for example, a table or
reference database), then the data can be loaded using an NCL procedure to
read the input data (for example, from a UDB, either a KSDS or an ESDS), and
use &NDBADD to add it to the NDB.

If a large amount of data is to be loaded this way, then use the DEFER option of
the NDB START command to prevent buffer flushing during the load.

When the load completes successfully, use an NDB START NODEFER command
to remove the defer status. There is no need to stop and restart the database.

Another way to speed up loading of large amounts of data is to create or start
the database in LOAD MODE. In this case, no keys are manipulated while
loading, making the load run much faster.

The NDB ALTER command must then be used to build all keys in a single pass.

Note: If a region failure occurs while an NDB is open in DEFER mode, then it is
flagged as unusable, and must be restored or recreated.

If the database is in LOAD MODE, it must have an NDB ALTER command run
against it to build keys.

The load program should use the EXCLUSIVE option of the &NDBOPEN
statement to prevent other users accessing the database while it is running.

The progress of the load program can be monitored by periodic use of the
SHOW NDB=dbname command. This command displays information about the
database, including the number of database requests executed (this is the sum
of NDB commands and &NDB NCL statements) since it last started.

Delete an NDB

334 Network Control Language Programming Guide

This completes the process of initialization (and initial loading) of an NDB. The
tasks are the same as required for any other UDB, except for the NDB CREATE
and field definition tasks.

Most of the initialization tasks can be combined into one NCL procedure, using
&INTCMD/&INTREAD to issue and check the commands, and &NDBxxx
statements to perform the definition and load. In a z/OS or MSP environment,
UTIL0007 can be used to perform the VSAM DELETE/DEFINE from NCL.

Delete an NDB

An NDB can be deleted by using the standard VSAM (IDCAMS) DELETE
command:

DELETE clustername CL

If the NDB is in use, then it must first be closed. To accomplish this, issue the
following commands:

NDB STOP dbname IMM LOCK

UDBCTL CLOSE=dbname

UNALLOC DD=dbname

The NDB STOP command, with the IMM and LOCK operands, immediately stops
the database, if it is active, and locks it from further access by any NDB
commands or &NDBxxx statements. Any currently signed on users are given
response 250 on their next request.

The UDBCTL CLOSE command physically closes the data set.

The UNALLOC command frees the data set so that it can be deleted.

Following the successful completion of the commands, the IDCAMS DELETE can
then be issued.

If the NDB is being deleted in preparation for reuse as an empty database, then
the NDB RESET command provides a more convenient way to do this.
Alternatively, if the data set was defined to VSAM with the REUSE option, then a
UDBCTL OPEN RESET command causes VSAM to clear the data set back to
empty.

Alter Field Definitions in an NDB

Chapter 16: NetMaster Database Administration 335

Delete All Data in an NDB

If an NDB is being used as a journal file (that is, it is cleared regularly after a
specified time or number of records, for example), it can be cleared in three
ways:

■ Write an NCL procedure that reads the entire database sequentially (for
example, by RID) and deletes all records-this method is slow and tedious.

■ Physically delete the data set (or issue a UDBCTL OPEN RESET command if
the data set is defined with REUSE), and re-create it, as described
previously-this method has practical uses, such as when the data set must
be relocated on DASD or needs more space.

■ Use the NDB RESET command-this method is normally the best approach.

The NDB RESET command deletes all data records (and their keys) from an
NDB, but preserves the field definitions. Thus, it is equivalent to deleting,
defining, re-creating, and reissuing all &NDBDEF ADD statements or NDB
FIELD commands required to build the field definitions.

An NDB must not be active when the NDB RESET command is issued. This
prevents active users from having the database cleared underneath them. A
LOCKED database cannot be reset.

The following sequence of commands resets an NDB:

NDB STOP dbname IMM

NDB RESET dbname

If the database is not active, then the NDB STOP command effectively does
nothing. The RESET command gives you the option of placing the database
into LOAD MODE.

Alter Field Definitions in an NDB

Altering field definitions can be broken into three activities:

■ Adding new field definitions to an NDB

■ Deleting field definitions from an NDB

■ Updating field definitions in an NDB

The first two can be done directly, at any time, even while users are accessing
the database. Use the NDB FIELD ADD= fieldname and NDB FIELD DELETE=
fieldname commands.

Alter Field Definitions in an NDB

336 Network Control Language Programming Guide

Add Field Definitions

Adding a field definition makes the field immediately available to all users.

When adding field definitions after data is already in an NDB, defining a field
with NULLFIELD=NO causes errors on the update of any record that existed prior
to the definition, if the newly defined field is not included in the update list. This
is because it is a required field, and is not in the record.

Delete Field Definitions

Deleting a field definition logically removes the field from the database.
Following the delete, all data values for that field become inaccessible.

Deleting a field immediately makes the field inaccessible to NCL procedures.
Any currently active sequences (&NDBSEQ) defined on that field, if it is keyed,
are given a response code on the next &NDBGET referring to that sequence.
Predefined formats (&NDBFMT) referring to the field still valid until they are
redefined. An in-progress &NDBSCAN could get undefined results.

Deleting a field causes a physical VSAM delete to be performed for all the
associated key records. The data records, however, are not updated. To do so
would create an unacceptable overhead. Instead, the field value in each data
record is regarded as logically deleted. It is inaccessible. Whenever a data record
is updated, all logically deleted fields are removed.

Alter Field Definitions in an NDB

Chapter 16: NetMaster Database Administration 337

Update a Field Definition

A field definition can be updated at any time. However, not all field attributes
can be changed at any time. Some changes require the database to be empty
(that is, just created or reset), or in LOAD MODE. Some field attribute
alterations are prohibited.

The following field attributes can be changed at any time:

■ DESC = description

■ USER1, USER2, USER3, USER4

■ NULLVALUE

■ NULLFIELD (except for KEY = SEQ field)

■ UPDATE (except for KEY = SEQ field)

■ KEY = Y to KEY = N

■ KEY = U to KEY = Y or N

■ NEWNAME (to rename the field)

The following attribute can be changed if the field is not keyed (that is,
KEY=NO):

■ CAPS = YES to CAPS = SEARCH

The following attributes can be changed if the database is in the LOAD MODE or
empty:

■ KEY (except to/from SEQ)

■ CAPS = SEARCH/NO to CAPS = NO/SEARCH

The following attributes can be changed if the database is empty:

■ FMT

■ CAPS

■ KEY (except to/from SEQ)

The following attribute cannot be changed:

■ KEY = SEQ (to or from)

Note: A field can also be changed from KEY = N to KEY = Y by using the NDB
ALTER command.

Back Up an NDB

338 Network Control Language Programming Guide

Back Up an NDB

Back up an NDB with the standard IDCAMS utility functions (that is, REPRO or
EXPORT). For integrity, the data set should not be open. Issue the following
commands to ensure this:

NDB STOP dbname IMM LOCK

UDBCTL CLOSE=dbname

Following completion of the backup, issue the following command to make the
NDB available again:
UDBCTL OPEN dbname options

NDB START dbname UNLOCK options

The options on these commands should agree with any standard options
specified (for example, LSR/DEFER on the UDBCTL statement).

Restore an NDB

If an NDB must be restored from a backup copy, then use the standard IDCAMS
restore facility associated with the backup copy. For example, if REPRO was
used to backup the database, then use REPRO to restore it; if EXPORT was used
to backup the database, then use IMPORT to restore it.

When using REPRO, define the database with REUSE to allow the REUSE option
of REPRO to be used. This makes a DELETE/DEFINE prior to the restore
unnecessary.

The database must not be open while a restore is in progress. To create a
consistent environment for NCL procedures using the NDB, issue an NDB STOP
LOCK command prior to the restore. This causes all &NDBOPEN statements
executed to get a database locked response.

Upon completion of the restore, issue the UDBCTL OPEN, as required, and an
NDB START UNLOCK command to restart the database, and release the lock.

Monitor NDB Activity

Chapter 16: NetMaster Database Administration 339

Monitor NDB Activity

Use the SHOW NDB, SHOW NDBUSER and the TRACE option of the NDB START
command to monitor NDB activity.

To determine the number of NDBs currently active, issue the command:

SHOW NDB

The output from this command shows the number of NDBs active, locked, and
stopping. To obtain detailed statistics about all active or locked NDBs, or a
specific NDB, use the command(s):

SHOWNDB=ALL-* for all, or

SHOWNDB=dbname-* for a specific NDB.

The output from these commands indicates the status of the NDB(s), the
number of signed on users, the number of commands processed, and whether
the database was started in DEFER status.

This display is particularly useful for monitoring the progress of long-running
procedures that are loading or reading large numbers of records.

To determine the user ID(s) of users signed on to all active NDBs, issue the
command:

SHOW NDBUSER

The output from this command, which is similar to the SHOW UDBUSER
command, indicates details such as the database, user ID, and LU name
(terminal) for all users signed on to any NDB.

Note: A SHOW UDBUSER shows *NDB as the only user of a UDB that is an NDB.
This serves as an indication to the issuer of the SHOW UDBUSER command that
a SHOW NDBUSER command is required for this UDB/NDB to obtain a list of
signed on users.

Using the TRACE option of the NDB START command causes a message to be
written to the activity log every time an &NDB verb or an NDB command is
issued involving that particular NDB. Tracing can be stopped at any time by
issuing an NDB START command specifying NOTRACE.

Monitor NDB Performance

340 Network Control Language Programming Guide

Monitor NDB Performance

Monitoring is used, for example, for physical tuning and buffer tuning. Use a
periodic IDCAMS LISTCAT command to monitor the physical attributes of the
NDB, including DASD space, number of extents, and CI splits.

An NDB itself does not need reorganization internally. VSAM, however, might
need to reorganize to remove excessive CI and/or CA splits if a large amount of
key addition, deletion, or value changing takes place. This can be accomplished
by using standard IDCAMS services to backup, delete, redefine, and restore the
data set.

Important! You must not change the VSAM key length or maximum record
length during this reorganization. If you do, the NDB will not be usable.

If you need to increase the key length, the NDB must be logically unloaded,
deleted, recreated, and logically reloaded.

The SHOW VSAM command allows you to determine whether the NDB
performance would benefit from increased buffering, if not running from the
LSR pool, or from increases or changes in the LSR pool definition. Standard
VSAM tuning techniques should be followed.

Improve Performance by Using LOAD MODE

As NDBs use inverted-list indexes, bulk record addition, update, or deletion can
be slow. This is because of the large number of physical file updates required to
manage all the keyed field indexes.

To allow fast loading (in particular), an NDB can be placed in LOAD MODE. In
LOAD MODE, no keys (other than the optional sequence key) are maintained.
This greatly improves record add speed.

When in LOAD MODE, records can be added, updated, deleted, retrieved, or
scanned. However, none of these operations use keys. This means that GET or
SEQ by a key is not allowed. Only RID access is permitted.

The only way to take an NDB out of LOAD MODE is to use the NDB ALTER
command. This command, using the BLDX DB option, reads all the NDB data
records, extracts all keys, sorts them, and writes them in a single pass. It checks
for errors (for example, unique key violation) and, when finished, resets LOAD
MODE.

Multiple System Access to an NDB

Chapter 16: NetMaster Database Administration 341

Check an NDB for Consistency

If you want to validate the relationship between keys and data in an NDB, you
can use the NDB ALTER command CHKX option to do this. It extracts and sorts
all keys from the data and then compares them with the actual key records in
the NDB. All errors are reported.

Multiple System Access to an NDB

An NDB may be corrupted by:

■ The database being opening by two regions (same machine or shared DASD)

■ The database being opened twice (under different file IDs) on the same
region

There are several internal protection mechanisms that attempt to prevent such
corruption:

■ The VSAM timestamp of the NDB is compared with all other open NDBs. A
match prevents the NDB from opening. This blocks one NDB from being
opened twice by the same region.

It is not totally foolproof, as VSAM updates the timestamp each time the
VSAM data set is physically closed (that is, UDBCTL CLOSE occurs).

While an NDB is open, the control record contains the domain ID of the
accessing product region. This field is closed when the NDB is closed.

If, when opening an NDB, a non-blank domain ID is found, and it is not the
same as the current domain ID, then the NDB does not open unless the
FORCE operand of the NDB START command is used.

This prevents a database being opened by two different regions. Use the
FORCE operand if there is a system failure and the NDB must be opened on
a different region.

■ The name used to open the NDB (that is, UDBCTL ID = operand value) is
stored in the NDB control record. If a mismatch occurs on open, a
Important! message is written. The open is allowed to continue unless other
problems occur.

■ Despite the previous precautions, an NDB can always be opened in INPUT
MODE. This bypasses all the checks but no updates can be performed.

■ NDB security-NDBs can be protected by the NCL security exit, NCLEX01 (see
page 567). This protection can be used to restrict users' NCL procedures to
specific NCL statements for functions such as updating and adding.

How to Implement NDB Journaling

342 Network Control Language Programming Guide

How to Implement NDB Journaling

To implement NDB journaling, perform the following steps on your region:

1. Define two journal data sets (see page 342)

2. Allocate the data sets to the product region (see page 342)

3. Make duplicates of the NDBs (see page 343)

4. Add the duplicates to the batch forward recovery JCL (see page 343)

5. Start the NDBs (see page 344)

Define Two Journal Data Sets

Use IDCAMS to define two VSAM entry-sequenced data sets (ESDS). The
following parameters are required (use sample $NDIDCDJ):

NONINDEXED

Indicates an ESDS.

REUSE

Journal is cleared when opened for update.

RECORDSIZE

Journal record size should be greater than the record size minus key length
+ 60 of the largest NDB using the journal.

The space allocated to the journal depends on the number of NDB updates
occurring on the system, and the frequency with which you swap journals for
batch processing. The volume should ideally be on a separate unit to the NDBs
being journaled.

Allocate Data Sets to the Product Region

Allocate the two journal data sets, using DISP=SHR, to the product region by
either including them in the JCL, declaring them in the NETMASTR SYSIN deck,
or allocating them in NMINIT or NMREADY NCL procedures.

How to Implement NDB Journaling

Chapter 16: NetMaster Database Administration 343

Make Duplicates of the NDBs

Stop the NDBs you want to journal and create duplicates of them using IDCAMS
REPRO.

The duplicate must be created after the NDB CREATE has been performed to
initialize the NDB.

Once the duplicate has been created, it is important to keep it synchronized
with the primary copy by ensuring that all NDB journal records written after the
duplicate was made are applied to it.

For an existing NDB which has already been loaded, the decision to start
journaling updates can be made at any time.

If you regularly shut down your product region, CA recommends that you
resynchronize your NDB backups with the primary copy. Do not apply journals
created before the new backup copy.

Add the Duplicates to the Batch Forward Recovery JCL

The batch forward recovery utility (UTIL0010) applies the NDB journal to a
duplicate copy of the NDBs.

Add the data set name of the NDB duplicate to your batch forward recovery JCL
(use sample $NDUT010).

Make sure you have updated the JOURNL1 and JOURNL2 DD statements in the
sample with the two journal data set names you defined in Task 1.

Include in the utility JCL all NDBs which require forward recovery. By default, the
utility attempts to forward recover all NDBs which have journal records present
in the journal data set. The DD name for the NDB should be the same as the
NDB name used to identify it to the product region.

Use the control cards on the U10IN data set to specify a subset of NDBs.

The format of a U10IN control card is:

RECOVER NDB=ndbid [,DD=name]

where the DD operand can be used to specify an override DD name for the NDB.

How to Implement NDB Journaling

344 Network Control Language Programming Guide

RECOVER ALL is used to indicate that all NDBs are to be forward recovered. This
is the default.

The following is a sample JCL specification for the forward recovery utility:

//FWDRECVR EXEC PGM=UTIL0010,PARM='JOURNAL=JOURNL1'

//STEPLIB DD DSN=steplib,DISP=SHR

//U10PRINT DD SYSOUT=*

//U10IN DD*

 RECOVER ALL

//JOURNL1 DD DSN=USER.NDB.JOURNAL1,DISP=SHR

//JOURNL2 DD DSN=USER.NDB.JOURNAL2,DISP=SHR

//*

//NDB1 DD DSN=USER.NDB.BACKUP.NDB1,DISP=SHR

//NDB2 DD DSN=USER.NDB.BACKUP.NDB2,DISP=SHR

//NDB3 DD DSN=USER.NDB.BACKUP.NDB3,DISP=SHR

//*

Note: The JOURNAL=JOURNL1 parameter specified on the EXEC UTIL0010
statement is used to override the journal DD name. If this parameter is not
specified, then the DD name used is JOURNAL.

Start the NDBs

Issue an NDB START command with the JOURNAL operand specified.

The first time an NDB START command (with the JOURNAL operand) is issued, it
causes the journal data sets to be opened. The system normally checks both
journal data sets and begins processing with the oldest one. This gives you time
to run the forward recovery utility if the system was restarted after failure.

If JOURNL1 is empty, then no attempt is made to check the second data set, and
journaling begins immediately on JOURNL1.

How to Implement NDB Journaling

Chapter 16: NetMaster Database Administration 345

NDB Journal Swapping

Journals swap if a JOURNAL SWAP command is issued or if the journal in use
runs out of space.

Each time a journal is swapped, the journal control NCL procedure is started to
assist the automation of forward recovery. The SYSPARMS JRNLPROC command
can be used to specify the procedure name (the default is $NDJPROC).

If the system terminates abnormally, submit the NDB forward recovery job
manually (or from an alternate automation process), as the other journal is used
after the restart, and a swap effectively occurs.

Forward recovery must be performed before a journal swap occurs after the
system restart.

We recommend that you apply journals to the NDB backups as soon as they are
swapped.

Chapter 17: Using &NDB Verbs 347

Chapter 17: Using &NDB Verbs

This section provides examples of the use of the NCL verbs related to NetMaster
Databases (NDBs). There are examples that include adding, deleting, updating,
and retrieving records, as well as examples that use information about the
database.

The success or failure of many &NDB verbs is indicated as a completion or error
code returned in the system variables &NDBRC and &NDBERRI on completion of
the function. Throughout this section, reference is made to specific return codes
that can occur on particular conditions.

This section contains the following topics:

Relationship Between &FILE and &NDBxxx Verbs (see page 347)
Access an NDB (see page 349)
Work with NDBs (see page 350)
Notes on Sequential Retrieval (see page 359)
Obtain Information About an NDB (see page 362)
Change NDB NCL Processing Options (see page 364)
Put It All Together—Unload or Reload an NDB (see page 365)

Relationship Between &FILE and &NDBxxx Verbs

Although the &NDB verbs are functionally similar to the &FILE verbs, there are
some significant differences.

More information:

Differences Between NDBs and UDBs (see page 313)

Relationship Between &FILE and &NDBxxx Verbs

348 Network Control Language Programming Guide

Protect Your Data Values with &NDBQUOTE

Several &NDB verbs use a free-form text syntax.

For more information about the &NDBSCAN verb syntax, see the Network
Control Language Reference Guide.

When processing the free-form text, certain characters, for example, '(', ',' and
')', act as delimiters. If the data value contains one of these characters, it could
cause a syntax error, and will not be preserved.

To prevent this, data values can be quoted, using either single (') or double (”)
quotes. If the data contains the selected quote character, two of that character
must be used.

The &NDBQUOTE built-in function automatically quotes the data when
required. It knows the characters that require quoting, and picks single or
double quotes as required. It also handles doubling of embedded quotes.

Preserve Lowercase Data

If the data you store in an NDB contains lowercase characters, ensure that
&CONTROL NOUCASE is in effect in all procedures that use the &NDBADD or
&NDBUPD verbs. Failure to do so could mean the accidental folding of data to
uppercase. This requirement also applies to &NDBDEF and the NDB FIELD
command when adding field descriptions or USER1–4.

Define and Delete Fields in an NDB

An NDB has no predefined fields. All fields must be defined once before they
can be used. This is normally done by the Database Administrator when the NDB
is defined.

Field definitions can be added or deleted at any time, even while other users are
accessing the NDB, although you might not want to do this.

The names and attributes of defined fields can be obtained by using the
&NDBINFO verb.

More information:

Alter Field Definitions in an NDB (see page 335)
Obtain Information About an NDB (see page 362)

Access an NDB

Chapter 17: Using &NDB Verbs 349

Access an NDB

Before any records can be added to, deleted from, or retrieved from an NDB,
the NCL process must sign on, or connect itself to the NDB. This is accomplished
using the &NDBOPEN verb:

&NDBOPEN dbname

This statement registers the NCL process as a signed-on user of the nominated
NDB.

If you want the NCL process to have exclusive control over the NDB, then specify
the keyword, EXCLUSIVE, after the database name.

If you want to perform input only operations, then use the INPUT keyword.

If a security exit is being used, the DATA keyword can be used to allow up to 50
characters of data to be passed to the exit.

The &NDBRC system variable should always be checked after &NDBOPEN, to
ensure it was successful. If the value of &NDBRC is not 0, then the open has
failed, except for response 34, which indicates that the NCL process is already
signed on.

When an &NDBOPEN is executed, &NDBCTL ERROR=CONTINUE is always
assumed, to allow the NCL process to handle errors at this point. If an open
failure occurs, and no action is taken, then the next &NDBxxx statement for that
database will get a not open response. Response 34 (already open) will
terminate the procedure unless an explicit &NDBCTL ERROR=CONTINUE is in
effect.

The &NDBOPEN verb is analogous to the &FILE OPEN verb. However, there is no
need to reissue &NDBOPEN after referencing an NDB of another name. This is
because &NDB statements that refer to an NDB require the name of the NDB
that is to be accessed, whereas the &FILE verbs assume the UDB named in the
last executed &FILE OPEN statement.

EASINET Considerations

If NDBs are being accessed by EASINET procedures, they should not be open
across the &PANEL statement that displays the network logo. To do so would
increase the amount of storage each network terminal would need.

Work with NDBs

350 Network Control Language Programming Guide

Close an NDB

When an NCL process has completed use of an NDB, use the &NDBCLOSE verb
to sign off (disconnect) the NCL process from the NDB:

&NDBCLOSE dbname

The &NDBCLOSE verb disconnects the NCL process from the nominated NDB, if
it is connected (signed on).

All storage associated with the process is freed. This includes storage for defined
formats (&NDBFMT), sequences (&NDBSEQ), and scan result lists (&NDBSCAN).

&NDBCLOSE is analogous to the &FILE CLOSE verb.

Work with NDBs

You can use NCL verbs to add records to and update, delete, and retrieve them
from an NDB.

Add Records to an NDB

The &NDBADD verb is used to add records to an NDB. The fields for the new
records must be named on the &NDBADD statement, along with their values.
Not all fields need to be supplied. For the database manager, only those fields
with the attribute NULLFIELD = NO need be supplied-this includes the sequence
key, if one is defined.

If you only need to supply a few fields on the &NDBADD statement, code it as
follows:

&NDBADD dbname DATA name1 = value1 name2 = value2 ...

If you need to supply a large number of fields, or you are not sure of the exact
content of the new record (for example, table driven systems), the second
format of the &NDBADD verb can be used:

&NDBADD dbname START

&NDBADD dbname DATA name1 = value1

&NDBADD dbname DATA name2 = value2

&NDBADD dbname DATA name3 = value3

&NDBADD dbname DATA name4 = value4

&NDBADD dbname END

Work with NDBs

Chapter 17: Using &NDB Verbs 351

This syntax allows a record of any length to be created.

The fields need not be in any order, and the collection of &NDBADD statements
need not be adjacent. For example, a loop could be used, with complex
substitution, to build the list of field names and values:

&NDBADD MYNDB START

&I = 1

&DOWHILE &I LE &NFLDS

 &VALUE = &NDBQUOTE &FV&I

 &NDBADD MYNDB DATA &FN&I = &VALUE

 &I = &I + 1

&DOEND

&NDBADD MYNDB END -* this statement calls the DBMS

In this example, you loop through a table of field names and values, adding each
field.

Following the &NDBADD, or &NDBADD END, if you are using START/DATA/END,
the &NDBRC system variable contains 0 if no errors were encountered. If not 0,
an error response indicates the problem, and &NDBERRI might have additional
information. An error message is also displayed unless &NDBCTL MSG=NO is in
effect.

If the response is 0, &NDBRID contains the RID assigned to the new record. This
RID can be used in other &NDB statements to refer to the new record.

Update Records in an NDB

A record in an NDB can be updated using the &NDBUPD verb. Unlike the &FILE
PUT verb, an &NDBUPD verb only updates the nominated fields. All other fields
retain their existing value. The &FILE PUT verb replaces the entire record.

The RID(s) of the record(s) to be updated must be known. Normally, the RID is
determined by a preceding &NDBGET or &NDBSCAN.

To update just a few (fixed amount) fields, code:

&NDBUPD dbname RID=rid DATA name1 = value1 name2 = value2

where name1, name2, ... are the names of the fields to be updated, and value1,
value2, ... are the values.

Work with NDBs

352 Network Control Language Programming Guide

If you need to update a large number of fields, or you are not sure of the exact
content of the update, an alternative format of the &NDBUPD verb can be used:

&NDBUPD dbname RID=n START

&NDBUPD dbname DATA name1 = value1

&NDBUPD dbname DATA name2 = value2

&NDBUPD dbname DATA name3 = value3

&NDBUPD dbname DATA name4 = value4

&NDBUPD dbname END

This syntax allows any number of fields to be updated.

The fields need not be in any order, and the collection of &NDBUPD statements
need not be adjacent. For example, a loop could be used, with complex
substitution, to build the list of field names and values:

&NDBUPD MYNDB RID=&UPDRID START

&I = 1

&DOWHILE &I LE &NFLDS

 &NDBUPD MYNDB DATA &FN&I = &VALUE

 &I = &I + 1

&DOEND

&NDBUPD MYNDB END -* this statement calls the DBMS

In this example, we loop through a table of field names and values, updating
each nominated field.

Note: Fields defined with UPDATE=NO can be specified in the update list, as
long as the same value as is currently in the record is supplied.

A field that is to be set to null (not present) can be represented by coding:

fieldname = &NULL

where &NULL is an undefined variable. If the field definition has NULLFIELD=NO,
an error response will be given.

Following the &NDBUPD or &NDBUPD END, if you are using START/DATA/END,
the &NDBRC system variable contains 0 if no errors were encountered. If not 0,
an error response indicates the problem, and &NDBERRI might have additional
information. An error message is also displayed unless &NDBCTL MSG=NO is in
effect.

If the response is 0, &NDBRID contains the RID that was supplied on the
&NDBUPD verb.

Work with NDBs

Chapter 17: Using &NDB Verbs 353

Delete Records from an NDB

To delete records from an NDB, use the &NDBDEL verb. The RID(s) of the
record(s) to be deleted must be known. The RID is normally obtained from a
preceding &NDBGET or &NDBSCAN.

To delete a record, code:

&NDBDEL dbname RID=&rid

where &rid is an NCL variable that contains the RID.

There is no direct equivalent to the &FILE DEL KEQALL/KGEALL generic delete.
However, embedding an &NDBDEL in a loop controlled by an &NDBGET
GENERIC or &NDBGET SEQUENCE=name allows easy deletion of any group of
records (particularly powerful after an &NDBSCAN).

Example: Delete Records from an NDB

This example shows how to delete all records that have SURNAME = SMITH and
STATUS = DEPARTED.

&NDBSCAN MYNDB SEQ=S1 DATA SURNAME = SMITH AND STATUS = +

 DEPARTED

&IF &NDBRC = 0 &DO

 &NDBGET MYNDB SEQ=S1 FORMAT NO-FIELDS

 &DOWHILE &NDBRC = 0

 &NDBDEL dbname RID=&NDBRID

 &NDBGET dbname MYNDB SEQ=S1 FORMAT NO-FIELDS

 &DOEND

&DOEND

Following the &NDBDEL, the &NDBRC system variable is set to 0 if the delete
was successful, or 1 if no record with the supplied RID was found.

Work with NDBs

354 Network Control Language Programming Guide

Retrieve Records from an NDB

To retrieve records from an NDB, use the &NDBGET verb. There are two related
verbs:

■ &NDBFMT, used to predefine a list of the fields to be returned by &NDBGET

■ &NDBSEQ, used to define a sequential read path for an NDB

You can retrieve records from an NDB in several ways:

■ Direct by RID, allowing EQ, GE, GT, LE, LT relationships with your RID value.
This is useful when you know the RID of the record you want.

■ Direct by any keyed field. The key field value of the returned record can be
EQ, LE, LT, GE, GT, or generically equal to the supplied key. If the key field is
not unique, only the record with the lowest RID for any set of records with
the same key field value can be accessed this way.

■ Sequentially by RID. Records are returned in ascending or descending RID
sequence. For databases without a sequence key, this is the fastest way to
read the entire database. Optionally, a starting and/or ending RID can be
nominated. The last record read can also be re-read without knowing its
RID.

■ Sequentially by any key field (including a sequence key, if defined). Records
are returned in ascending or descending key field sequence. If the key is not
unique, RID is used to sequence records with an equal key field value. For
databases defined with a sequence key, retrieval by that field is the fastest
way to read the entire database. Optionally, a starting and/or ending key
value can be nominated. The last record read can also be re-read without
knowing its RID.

■ Sequentially, from a list of records that passes an &NDBSCAN.

■ Indirectly by a keyed field where its value is stored in another record in the
NDB.

■ You can also retrieve statistical information about any key field (also known
as a histogram).

More information:

Scan Processing (see page 377)

Work with NDBs

Chapter 17: Using &NDB Verbs 355

Define Fields to Return (&NDBFMT)

When retrieving records from an NDB, it is likely that not all the fields in a
record are needed. Also, it might be desirable to return the fields in NCL
variables with different names. The &NDBFMT verb lets you define any number
of named formats, that can be nominated on an &NDBGET statement, referring
to the same NDB. The nominated format determines which fields will be
returned, and the names of the NCL variables that will receive the values.

The defined format can request that all fields defined in the database be
returned (ALL-FIELDS), or that all fields defined as keyed be returned
(KEY-FIELDS), or that no fields be returned (NO-FIELDS) (useful for just checking
for existence of a record), or that a list of nominated fields be returned,
optionally in NCL variables with a different name.

Note: A format can also be specified directly on the &NDBGET statement, but
this is not recommended, particularly if the &NDBGET statement is in a loop.
The format definition must be parsed and encoded every time the &NDBGET
statement is executed.

A format stays defined until explicitly deleted (by &NDBFMT ... DELETE), or until
an &NDBCLOSE is executed for that NDB.

The following are examples of predefined formats:

&NDBFMT MYNDB DEFINE FORMAT=FMT1 DATA ALL-FIELDS

&NDBFMT MYNDB DEFINE FORMAT=FMT2 DATA NO-FIELDS

&NDBFMT MYNDB DEFINE FORMAT=FMT3 START

&NDBFMT MYNDB DATA FIELDS

&NDBFMT MYNDB DATA SURNAME FIRSTNAME

&NDBFMT MYNDB DATA (LNAME = LASTNAME)

&NDBFMT MYNDB END

It is evident that the START/DATA/END syntax, as described under &NDBADD
and &NDBUPD, is also available when using &NDBFMT. Thus, complex variables
and open-ended formats can be defined. The START/DATA/END syntax is not
available on the &NDBGET verb. Any format defined in an &NDBGET statement
must fit on the &NDBGET statement itself.

The examples all assume predefined formats.

Work with NDBs

356 Network Control Language Programming Guide

Determine Which Fields Are Present

Since NDBs support null fields, it might be necessary to determine, when a
particular record is read, which fields are present and which are not. The
MODFLD option on the &NDBGET verb allows the use of &ZVARCNT and
&ZMODFLD to access the modified fields:

&NDBGET dbname retrieval-method format-method MODFLD=YES

&field1 = &ZMODFLD

&field2 = &ZMODFLD

...

Retrieve Records Directly by RID

When you know the RID of the record that you want, perhaps from an earlier
&NDBADD, you can retrieve it by coding:

&NDBGET dbname RID=ridvalue FORMAT=fmtname

ridvalue is a variable containing an RID obtained elsewhere.

You can also code OPT=KGE, and so on, to retrieve a record with an RID
satisfying the coded option. For example, OPT=KGT returns the record with the
next-highest RID than the value passed. It is possible to simulate sequential
reading by RID using this technique.

Retrieve Records by Key Field

When you know the value for a key field, retrieve a record matching that key
field by coding:

&NDBGET dbname FIELD=fieldname VALUE=value FORMAT=fmtname

Code OPT=KGE to return a record where the key field satisfies the coded option.
For character or HEX fields, OPT=GENERIC is also supported. Use OPT=KGT for
forward, or OPT=KLT for backward, and supply the last key field value as the
search argument to simulate sequential reading.

For key fields that are not unique, this technique always returns the record with
the lowest RID, from the set of records having the same key field value. The
other records cannot be accessed this way.

Work with NDBs

Chapter 17: Using &NDB Verbs 357

Read Sequentially by RID

When the entire database, or a large portion of it, must be read sequentially,
and the order of returned records is unimportant, the following technique
should be used.

&NDBSEQ dbname DEFINE SEQ=SEQ1 RID

&NDBGET dbname SEQ=SEQ1 FORMAT=fmtname

&DOWHILE &NDBRC = 0

 ... process record

 &NDBGET dbname SEQ=SEQ1 FORMAT=fmtname

&DOEND

The &NDBSEQ statement sets up a sequential retrieval definition, that can be
used on an &NDBGET statement to retrieve records sequentially by RID. By
default, the options SKIP=+1 and DIR=FWD are assumed on the &NDBGET, so
the database is read from lowest RID to highest RID.

Options on the &NDBSEQ statement allow specification of a low and high RID.

If the database has a sequence key, the next method will perform better.

Retrieve Records Sequentially by Key Field

When you want to retrieve records by any key sequence, the following
technique can be used:

&NDBSEQ dbname DEFINE SEQ=seqname FIELD=keyfieldname +

FROM=fromvalue TO=tovalue

&NDBGET loop as coded in previous example.....

This use of &NDBSEQ and &NDBGET allows sequential retrieval by any key field,
and, for non-unique key fields, records with the same key field value are
returned in RID sequence within the value.

The FROM and TO operands on &NDBSEQ are optional. If omitted, the lowest
(FROM) or highest (TO) key values are used. For non-unique key fields,
VALUE=value can be coded to indicate the from and to values are the same. This
is useful when you want to read all records with the same non-unique value. For
character and HEX fields, GENERIC=value can be coded to indicate the range is
to cover all records with that generic key value.

Work with NDBs

358 Network Control Language Programming Guide

Retrieve Records Indirectly by Key Field Stored in Another Record

If the NDB has multiple record types (see page 320), the key identifying the
desired record is not always known immediately. The identifying key might be
stored in the field of another record.

For example, if the NDB contains an ordering system, it might be necessary to
access a customer record, given only an order number, the order record of
which contains a key identifying a separate customer record.

NDBs allow this type of access through the .LINK option of the
&NDBGET/&NDBFMT verbs. The technique is:

&NDBGET dbname RID=record ID FORMAT FIELDS .LINK +

(FROM=fldname TO=keyed-fieldname) FIELDS formatlist

Up to 16 different records can be accessed in the one &NDBGET statement
using linking; that is, one primary and up to 15 secondary records.

Any access method can be used for retrieving the first record. The retrieval
method for subsequent records is equivalent to an OPT=KEQ get.

Retrieve Keyed Field Statistics (Histogram)

All keyed fields in an NDB (except the sequence key) contain statistical
information on the number of records that have a particular unique key value.

The KEY option of &NDBGET and &NDBSEQ allow retrieval, not of a record, but
of a key value and record count. Thus, statistical information can be obtained.
This is very fast, as no data is accessed. When reading the NDB in this way, the
format specified on &NDBGET is completely ignored. (You can, for example,
code FORMAT = NO.) Instead, the data is returned in two NCL variables:

&NDBKEYVALUE keyed field value

&NDBKEYCOUNT keyed field record count

For example, to find out how many records have field surname with a value of
'Smith':

&NDBGET dbname KEY=SURNAME VALUE='SMITH' FORMAT=NO

Notes on Sequential Retrieval

Chapter 17: Using &NDB Verbs 359

To get a sequential breakdown of a key field's contents and counts:

&NDBSEQ dbname DEFINE SEQ=S1 KEY=SURNAME

&NDBGET dbname SEQ=S1 FORMAT=NO

&DOWHILE &NDBRC=0

 &WRITE &NDBKEYVALUE &NDBKEYCOUNT

 &NDBGET dbname SEQ=S1 FORMAT=NO

&DOEND

Notes on Sequential Retrieval

The &NDBSEQ verb and the &NDBSCAN verb let you specify a name for a
sequence. Unlike the &FILE verbs, an NCL process can have any number of
concurrent sequences defined on any number of databases. Positioning is
handled internally, with no need to use accompanying number of VSAM strings.

The only overhead is an internal NDB control block that maintains positioning.

Performing a direct get does not destroy any positioning maintained by active
sequences.

KEEP=YES on &NDBSEQ

By default, a sequence is automatically deleted when an end-of-file response is
returned (&NDBRC = 2). This is normally what is wanted, and saves you coding
an &NDBSEQ DELETE. If, however, you want the sequence to stay defined, you
can code KEEP=YES on the &NDBSEQ DEFINE, and the sequence stays defined
until explicitly deleted, or the NDB is closed.

&NDBSEQ RESET

A defined sequence can also be reset, allowing you to restart the sequence at
any point. For example, after reading forward, and getting an EOF response, you
are positioned after the last record in the sequence. Forward gets will continue
to return the EOF response. To re-read from the beginning, issue an &NDBSEQ
RESET as shown:

&NDBSEQ dbname RESET SEQ=seqname

Notes on Sequential Retrieval

360 Network Control Language Programming Guide

Optionally, you can nominate a key value to reposition to. The next get will
return the first record with the matching, or higher, or lower, if no match, and
depending on the direction:

&NDBSEQ dbname RESET SEQ=seqname REPOS=value

&NDBGET DIR= and SKIP=

When reading sequentially, the &NDBGET verb lets you specify the direction of
retrieval, FWD or BWD, and a skip amount.

The default is DIR=FWD and SKIP=+1, which causes the next-higher key record
to be read.

SKIP=0 causes a re-read of the last record read in that sequence. This is useful
where you are retrieving only a subset of fields, and sometimes need to obtain
extra fields. You need not specify a direct get by RID.

A skip amount (n) greater than 1 will allow you to skip n-1 records on each
&NDBGET. This is extremely useful when extracting samples from a database,
and especially useful when scrolling in selection lists (see the following
examples).

A negative skip amount causes the specified or defaulted direction to be
inverted. For example, SKIP=-5 is equivalent to SKIP=5 with DIR=BWD.

Specifying DIR=BWD allows a backward read to be performed. Thus, when you
need to retrieve records in descending key sequence, DIR=BWD can be used.

Read by Sparse Keys

When defining a sequence on a key field that is defined (or defaulted) with
NULLFIELD=YES, it is possible that some records do not contain the field. These
records will not be returned when reading by that sequence. This is because no
index record is built for fields not present in a data record. This can be especially
useful when the database contains multiple record types, as illustrated in one of
the following examples.

Notes on Sequential Retrieval

Chapter 17: Using &NDB Verbs 361

Example 1: Read by Sparse Keys

This example shows how two sequences defined on a single database, where
the logical record types are disjoint, using different key fields, can perform a
master/transaction update.

&NDBSEQ MYNDB DEFINE SEQ=MAST FIELD=MASTKEY

&NDBSEQ MYNDB DEFINE SEQ=TRAN FIELD=TRANKEY

&GOSUB .READMAST -* read mast, set &MASTKEY to 999999 if

 -* eof

&GOSUB .READTRAN -* read tran, set &TRANKEY to 999999 if

 -* eof

&DOWHILE &MASTKEY.&TRANKEY NE 999999.999999

 &IF &MASTKEY = &TRANKEY &DO

 ...process match

 &GOSUB .READTRAN

 &DOEND

 &ELSE &IF &MASTKEY GT &TRANKEY &DO

 ...process unmatched transaction

 &GOSUB .READTRAN

 &DOEND

 &ELSE &DO

 ...process unmatched master

 &GOSUB .READMAST

 &DOEND

&DOEND

Example 2: Read by Sparse Keys

This example shows how to use SKIP= to extract a subset of a database, perhaps
for statistical analysis.

&NDBSEQ MYNDB DEFINE SEQ=S1 RID

&NDBINFO MYNDB DB -* obtain # records in DB

&SKIP = &NDBDBNRECS / 1000 -* determine skip to get 1000

 -* recs

&NDBGET MYNDB SEQ=S1 SKIP=&SKIP FORMAT ALL-FIELDS

&DOWHILE &NDBRC = 0

 ...write sampled record.

 &NDBGET MYNDB SEQ=S1 SKIP=&SKIP FORMAT ALL-FIELDS

&DOEND

Obtain Information About an NDB

362 Network Control Language Programming Guide

Example 3: Read by Sparse Keys

This example shows how to process a selection list using a sequence and
SKIP/DIR.

&NDBSEQ MYNDB DEFINE FIELD=SURNAME KEEP=YES

&SKIPVAL = 1 -* initial skip

.LOOP &GOSUB .BUILD_PANEL -* builds panel.

 -* position now is last record on screen

&PANEL XYZPANEL

&IF &INKEY = PF08 &THEN &DO

 &SKIPVAL = +1 -* skip to next record after bottom

 &GOTO .LOOP

&DOEND

&ELSE &IF &INKEY = PF07 &DO

&SKIPVAL = (0-(&LUROWS*2))

 -* skip top + back 1

-*screens length

 &GOTO .LOOP

&DOEND

Obtain Information About an NDB

The &NDBINFO verb lets you obtain information about the current state of an
NDB, or any of the defined fields in an NDB.

To obtain information about the database, code:

&NDBINFO dbname DB

This statement sets several user NCL variables, prefixed by &NDBDB, with
database information.

For more information about the fields, see the &NDBINFO verb description
in the Network Control Language Reference Guide. Useful fields are:

&NDBDBNRECS

Contains the current number of records in the database.

&NDBDBNFLDS

Contains the current number of fields defined in the database.

&NDBDBVKL

Contains the VSAM key length of the database.

&NDBDBVRL

Contains the VSAM maximum record length of the database.

Obtain Information About an NDB

Chapter 17: Using &NDB Verbs 363

These fields can be used to determine if two NDBs are compatible (for example,
for backup purposes).

The &NDBINFO verb also allows retrieval of information about fields defined in
the database. Information can be retrieved about a field with a specific name, or
by relative field number, where the number is from 1 to the value returned in
&NDBDBNFLDS. This relative number is not fixed, but changes as field
definitions are added and deleted. For this reason, inquiry by number should
only be used in a loop (from 1 to &NDBDBNFLDS), with the database open
EXCLUSIVE.

To retrieve information about a specific field, where the name is known, code:

&NDBINBFO dbname NAME=fieldname

To retrieve information about relative field number n, code:

&NDBINFO dbname NUMBER=n

In both cases, information is returned in several user NCL variables, prefixed by
&NDBFLD. Following are several useful variables.

For more information about the returned variables, see the description of the
&NDBINFO verb in the Network Control Language Reference Guide.

&NDBFLDNAME

Contains the name of the field (useful when retrieving by relative number)

&NDBFLDFMT

Contains the format of the field, for example, CHAR

&NDBFLDKEY

Contains the key option for the field, for example, UNIQUE

This information can be used in a table-driven database query and update
program to edit or display data without needing to code specific details about
each NDB. It is also useful for unload and reload programs.

Change NDB NCL Processing Options

364 Network Control Language Programming Guide

Change NDB NCL Processing Options

The &NDBCTL verb is used to alter processing options associated with the
executing NCL process. Options that can be changed are:

■ Issuing messages on error conditions. By default (MSG=YES), a message is
sent to the environment the NCL procedure is running under. For a normal
NCL procedure, this is the OCS window. The messages are also logged. By
specifying MSG=LOG, error messages are only sent to the activity log.

By specifying MSG=NO, no error messages are issued. Only database
integrity messages that are sent to monitor receivers are issued.

Handling database error conditions. By default (ERROR=ABORT), a response
code greater than 29 (in &NDBRC) causes the process to be terminated with
an error message.

By specifying ERROR=CONTINUE the process retains control, but must check
&NDBRC for error responses.

&NDBOPEN is always processed as if &NDBCTL ERROR=CONTINUE is in
effect, except for response 34 (already open). The same applies to
&NDBCLOSE, except for response 35 (not open).

■ The format that dates can be entered (by &NDBADD/&NDBUPD, and
&NDBSCAN), and returned (by &NDBGET). By default (DATEFMT=*), the
user's UAMS language code, or, if no specific language code is in the user
definition, the system language code, determines whether dates can be
entered in DD/MM/YY (UK or DATE4), or MM/DD/YY (US or DATE5) format.

You can specify DATEFMT values of DATE1 to DATE10, UK (=DATE4), or US
(=DATE5), or * (meaning as described previously).

■ The need to quote values for characters, hexadecimal (FMT=HEX),
hexadecimal numbers (FMT=NUM BASE=HEX) and date format data using
the QUOTE operand. By specifying QUOTE=NO (the default) these data
types need not be quoted and embedded blanks in NCL variables in
free-form text are ignored.

By specifying QUOTE=YES all of the previously listed data types must be
quoted and embedded blanks are treated as real blanks, causing
&NDBQUOTE to force-quote all non-null data.

■ Tracing of the parsing of free-format text. By default (TRACE=NO), no trace
messages are produced.

By specifying TRACE=YES, a message is produced for each token in the
free-form text. This message is subject to the &NDBCTL MSG= setting. The
first 20 characters of each token are traced.

Put It All Together—Unload or Reload an NDB

Chapter 17: Using &NDB Verbs 365

■ Dumping a scan action table. By default (SCANDEBUG=NO), no dump is
produced. By specifying SCANDEBUG=YES, a dump of the generated scan
action table is produced. At completion of the scan, a second dump shows
record counts.

These options allow you to easily develop applications using NDBs, and to make
the procedures robust.

For example, while developing code, use MSG=YES and ERROR=ABORT. This will
give useful messages and stop a procedure at the error point. From time to
time, TRACE=YES can be used to track obscure syntax errors in free-form text
(particularly scan expressions, and problems caused by failing to quote data
containing delimiter characters).

When the code is finished, specifying MSG=NO (or MSG=LOG), and
ERROR=CONTINUE allows the procedures to handle unexpected errors
gracefully.

The DATEFMT= option lets you control the input and formatting of dates. The
default behavior (honoring the user or system date format) is normally the best
setting. However, when unloading or reloading data, &NDBCTL DATEFMT=NO
lets you be independent of the current language settings.

Put It All Together—Unload or Reload an NDB

The following examples illustrate many of the points covered previously. In
these examples, a simple pair of procedures is developed to unload and reload
logically a database.

These procedures unload any NDB to a VSAM ESDS. The unloading is in RID
sequence, unless the database has a sequence key, in which case that key
sequences the unloading.

Note: This procedure is described to illustrate some of the features of NDBs. It is
not recommended as the best way to unload files. The command NDB UNLOAD
unloads an NDB in the same format as the following procedure. The NDB ALTER
command can be used to speed up a reload.

Put It All Together—Unload or Reload an NDB

366 Network Control Language Programming Guide

Define an Unload File

A file to hold the unloaded data is needed. This example uses a VSAM ESDS. The
following definition could be used:

DEFINE CLUSTER (NAME(NDB.UNLOAD) -

 NIXD -

 RECORSIZE(40 500) -

 CISZ(4096))

This data set must be allocated to your product region:

ALLOC DD=UNLOAD DSN=NDB.UNLOAD

The data set must be made available to NCL, via the UDBCTL statement. When
an empty ESDS is opened, a dummy record is written. Our reload program must
skip this record.

UDBCTL OPEN=UNLOAD ID=* BUFND=5

The unload can now be performed.

Open the Database and Output Unload File

The unload procedure must now open the database, and the destination unload
file. Assume that the procedure is invoked from OCS with the name of the NDB
and the name of the unload file:

$NDBUNLD dbname esdsname

Open the database in exclusive mode, to prevent other users updating it while it
is being unloaded:

&DBNAME = &1 -* save db name to unload

&UNNAME = &2 -* save esds name

&NDBOPEN &DBNAME EXCLUSIVE

&IF &NDBRC NE 0 &THEN &GOTO .OPENERROR -* unable to open

&FILE OPEN &UNNAME

&IF &FILERC NE 8 &THEN &GOTO .OPENERROR -* cant add recs

To preserve any lower-case data, issue &CONTROL NOUCASE:

&CONTROL NOUCASE -* don't fold lower case data

Put It All Together—Unload or Reload an NDB

Chapter 17: Using &NDB Verbs 367

Unload Database Level Information

The first step is to write information about the database. You should write a
record identifying this as an NDB unload data set, and then write the
information returned from an &NDBINFO DB. Use a record type of 01 for the
header, and 02 for the database information:

&FILE ADD 01 NDB UNLOAD OF &DBNAME &DATE7 &TIME

&NDBINFO &DBNAME DB

&FILE ADD 02 &NDBDBNAME&NDBDBVKL &NDBDBVRL +

 &NDBDBNFLDS&NDBDBNRECS&NDBDBNRID

This information will be used by the reload program to verify the key and
records lengths of the destination NDB.

Obtain and Unload Field Level Information

To unload and reload the data, you need to know the names of the fields you
are unloading, and their attributes. Use &NDBINFO NUMBER= to extract field
level information. This information (record type 10) will be written, and vartable
built for use when processing data records.

To allow the reload program to easily perform field-level deletion, and so on,
you should also write the relative field number as well as the field name when
you unload.

Before reading the field information, set up parameters for the sequence that
you will define later, defaulting it to RID. If you encounter a sequence key
definition, alter the sequence parameter to FIELD=fieldname.

Put It All Together—Unload or Reload an NDB

368 Network Control Language Programming Guide

At the end of the field definitions, write a record type 11 to indicate the end:

&VARTABLE ALLOC ID=FTAB KEYFMT=NUM DATA=1

&SEQBY = RID

&FNUM = 0

&DOUNTIL &FNUM EQ &NDBDBNFLDS

 &FNUM = &FNUM + 1

 &NDBINFO &DBNAME NUMBER=&FNUM

 &VARTABLE ADD ID=FTAB KEY=FNUM FIELDS=DATA +

 VARS=NDBFLDNAME

 &IF &NDBFLDKEY = SEQUENCE &THEN &SEQBY = +

 FIELD=&NDBFLDNAME

 &FILE ADD 10 &FNUM +

 &NDBFLDNAME&NDBFLDFMT&NDBFLDKEY +

 &NDBFLDNULLF&NDBFLDNULLV&NDBFLDUPD +

 &NDBFLDCAPS&NDBFLDMAXL&NDBFLDDESC +

 &NDBFLDUSER1&NDBFLDUSER2&NDBFLDUSER3 +

 &NDBFLDUSER4

 &LOOPCTL 1000

&DOEND

&FILE ADD 11

Build a Format for Reading Data

To efficiently read the data, you predefine a format that contains all fields.
However, you rename each field to Fnnnn on retrieval. This prevents any
clashes with the control fields, if, for example, the database contains a field
called I. You also ask that null fields not be returned, to save processing
overheads.

You then loop through the vartable built previously, to build a format using
START/DATA/END:

&I = 1

&NDBFMT &DBNAME DEFINE FORMAT=UFMT START

&NDBFMT &DBNAME DATA FIELDS

&DOWHILE &I LE &FNUM

 &VARTABLE GET ID=FTAB KEY=I FIELDS=DATA VARS=FNAME

 &NDBFMT &DBNAME DATA (F&I = &FNAME NULLFIELD=NORETURN)

 &I = &I + 1

 &LOOPCTL 1000

&DOEND

&NDBFMT &DBNAME END

Put It All Together—Unload or Reload an NDB

Chapter 17: Using &NDB Verbs 369

Define the Sequence for Reading

The sequential retrieval path must be defined. The &NDBSEQ verb is used to
accomplish this:

&NDBSEQ &DBNAME DEFINE SEQ=USEQ &SEQBY

The type of sequence, RID or FIELD=sequence key, was set when you read the
field definitions.

Unload the Data

You are now in a position to unload all the data in the NDB.

First, write a header record for the data (type 20).

Write out each record as follows:

■ A header record, containing the RID and the number of non-null fields in
this record. (The RID is only for information, as the reload assigns new RIDs).
(Type 21).

■ n field records, one for each non-null field in the NDB data record (type 22).
These records contain the relative field number, field name, and field value.

■ A trailer record, indicating the complete NDB data record has been written
(type 23). You include the number of non-null fields in the record.

At the end of all data records, a type 29 record indicates the end of the data.
This record contains the count of the number of logical records unloaded.

To protect the unloaded data from the current language (and therefore date)
settings, issue an &NDBCTL DATEFMT=NO to force dates to be returned in
YYMMDD format:

&NDBCTL DATEFMT=NO

Put It All Together—Unload or Reload an NDB

370 Network Control Language Programming Guide

The data unload code is as follows:

&FILE ADD 20 -* header for data portion

&NRECS = 0 -* num records unloaded

&NDBGET &DBNAME SEQ=USEQ FORMAT=UFMT MODFLD=YES

-* read a record, return the fields modified in ZMODFLD,

-* ZVARCNT

&DOWHILE &NDBRC = 0 -* till eof

 &NRECS = &NRECS + 1 -* 1 more record

 &FILE ADD 21 &NDBRID &ZVARCNT -* record header

 &I = 1 -* field index counter

 &DOWHILE &I LE &ZVARCNT -* for all defined

 -* fields

 &FX = &SUBSTR &ZMODFLD 2 -* get unique field

 -* number

 &VARTABLE GET ID=FTAB + -* and associated

 -* field name

 KEY=FX +

 FIELDS=DATA +

 VARS=FNAME

 &FILE ADD 22 &FX &FNAME &FX -* write field

 -* num/name/value

 &I = &I + 1 -* next field

 &LOOPCTL 1000 -* prevent blowup

 &DOEND -* end all fields

 &FILE ADD 23 &ZVARCNT -* end record

 &NDBGET &DBNAME SEQ=USEQ FORMAT=UFMT MODFLD=YES

 -* get next

 &LOOPCTL 1000 -* prevent blowup

&DOEND -* end record loop

&FILE ADD 29 &NRECS -* num logical records

This code completes the unloading of data. All that is left is to close the files:

&NDBCLOSE &DBNAME

&FILE CLOSE &UNNAME

Other people can now use the database. The unloaded data can be processed as
necessary, for example, copied to tape.

This example procedure is in the NCL distribution library as member $NDBUNLD.
The code is as shown previously. See the source for more information.

Put It All Together—Unload or Reload an NDB

Chapter 17: Using &NDB Verbs 371

Unload Subsets Using Sparse Keys

If an NDB contains disjoint record types, using keys on fields that are not in all
records, you can unload just one record type by using one of those keys as the
unload sequence. This can be useful for extracting subsets of the database.

Reload an NDB from an Unload File

Having unloaded an NDB, you might want to reload it, possibly to restore the
NDB to a previous state, or to take it to another system.

It is assumed that the reload is to a new NDB that has been defined with
IDCAMS, allocated to your product region, and an NDB created.

For the purposes of the example, only minimal error checking is performed. The
sample procedure can be enhanced in many ways. Some of these are:

■ Allow merging of the unload data into an existing NDB

■ Display a field selection list and allow field attribute changes, field
renaming, and field deletion

■ Subset data selection, and so on

■ Using LOAD MODE to greatly speed up the load. This requires use of NDB
ALTER to build keys.

Put It All Together—Unload or Reload an NDB

372 Network Control Language Programming Guide

Open the Database and the Input Unload File

The procedure must first open the database, and the input unload file. It is
assumed that the procedure is invoked from OCS with the name of the NDB and
the name of the unload file:

$NDBRELD dbname esdsname

To speed up the reload, start the NDB in DEFER mode. This mode inhibits the
database manager from flushing buffers after each &NDBADD, at the expense of
an unusable database if the system fails while open this way. To set DEFER
mode, the database must have been opened by the UDBCTL command with the
options LSR and DEFER. The following NDB command causes deferred I/O:

NDB START &DBNAME DEFER

Note: The NDB START command can be issued at any time.

Set &CONTROL NOUCASE to protect lower case data:

&CONTROL NOUCASE

Open the database in exclusive mode, to prevent other users accessing it while
it is being reloaded:

&DBNAME = &1 -* save db name to reload

&RLNAME = &2 -* save esds name

&NDBOPEN &dbname EXCLUSIVE

&IF &NDBRC NE 0 &THEN &GOTO .OPENERROR -* unable to open

&FILE OPEN &RLNAME

&IF &FILERC GT 8 &THEN &GOTO .OPENERROR -* unable to open

You must now verify the input file. Read the initial load record (and ignore it),
and the second record, which should be the header record:

&FILE GET SEQ ARGS -* should be initld record

&IF &FILERC NE 0 &THEN &GOTO .READERR

&FILE GET SEQ ARGS -* should be 01 ndb

&IF &FILERC NE 0 &THEN &GOTO .READERR

&IF &1.&2.&3.&4. NE 01.NDB.UNLOAD.OF. +

 &THEN &GOTO .BADFILE

&INDBNAME = &5

&INULDATE = &6

&INULTIME = &7

&WRITE RELOAD FROM BACKUP OF &INDBNAME TAKEN &INULDATE +

 &INULTIME

Put It All Together—Unload or Reload an NDB

Chapter 17: Using &NDB Verbs 373

Check Database Attributes

You must now ensure that the destination database can support the reload.
Check the following:

■ New database VSAM key length is GE unload NDB key length.

■ New database is empty of both fields and records.

■ New database is freshly created, that is, next RID is 1. (A database emptied
by deleting all records, and deleting all field definitions is not suitable).

These tests could be relaxed in a full-function reload.

The code to perform the verification is as follows:

&NDBINFO &DBNAME DB -* get info about dest

&FILE GET SEQ ARGS -* read next record

 -* (02)

&IF .&1 NE .02 &THEN &GOTO .READERR -* validate

&IF &NDBDBVKL LT &3 &THEN &DO -* dest keylen short

 &WRITE destination key length short, load aborted

 &END 16

&DOEND

&IF &NDBDBNFLDS NE 0 &THEN &DO -* dest db has fields

 &WRITE destination database has fields defined, +

 load aborted

 &END 16

&DOEND

&IF &NDBDBNRECS NE 0 &THEN &DO -* dest db has records

 &WRITE destination database has records present, +

 load aborted

 &END 16

&DOEND

&IF &NDBDBNRID NE 0 &THEN &DO -* dest not just

 -* created

 &WRITE destination database not freshly created, +

 load aborted

 &END 16

&DOEND

Put It All Together—Unload or Reload an NDB

374 Network Control Language Programming Guide

Build Field Definitions

The next records in the unload file are the field definition records. Read them
and build field definitions in the new NDB.

Note: Because &10 contains the field maximum length, it is not used.

&FILE GET SEQ ARGS -* read next record

At this point, changes to field attributes could be processed. For example:

&IF .&3 = .SURNAME &THEN &5 = UNIQUE

&IF .&3 = .DOB &THEN &5 = YES

Also, the relative field number used during unload is available in &2. This can be
used during data reloading to alter field values, and so on.

At the end of this step, the new database has all the fields defined.

Load the Data

You can now reload the data records. Each NDB record is represented by one
type 21 record, n type 22 records, one for each non-null field, and one type 23
record.

Put It All Together—Unload or Reload an NDB

Chapter 17: Using &NDB Verbs 375

Use &NDBADD START/DATA/END to load the records:

&FILE GET SEQ ARGS -* should be type 20

&IF .&1 NE .20 &THEN &GOTO .READERR -* bad

&NLOAD = 0 -* num recs loaded

&OK = YES -* flag

&DOUNTIL &OK = NO -* rest of DB

 &FILE GET SEQ ARGS -* get a record

 &IF .&1 = .22 &THEN &DO -* field (most common)

 -* see note (1) -* poss changes to

 -* data

 &NDBADD &DBNAME DATA +

 &3 = &Q4 -* add the data

 &DOEND

 &ELSE &IF .&1 = .21 &THEN &DO -* start of record

 &NDBADD &DBNAME START -* start add of record

 &DOEND

 &ELSE &IF .&1 = .23 &THEN &DO -* end record

 &NDBADD &DBNAME END -* add the record

 &NLOAD = &NLOAD + 1 -* bump num recs

 &DOEND

 &ELSE &OK = NO -* otherwise exit

 -* until

 &LOOPCTL 1000 -* prevent blowups

&DOEND

&IF .&1 NE .29 &THEN &GOTO .READERR -* unrecognized record

&IF &2 NE &NLOAD &THEN &GOTO .CNTERR

 -* record cnt mismatch

Note: Special code, to alter or skip certain fields for example, can be added
here.

This completes the reload. All that is left is to close the files:

&NDBCLOSE &DBNAME

&FILE CLOSE &RLNAME

To flush the database buffers, and protect the reload, re-issue the NDB START
with the NODEFER option:

NDB START &DBNAME NODEFER

This example procedure is in the NCL distribution library as member $NDBRELD.
The code is basically as shown previously. See the source for more information.

Chapter 18: Using &NDBSCAN Statements 377

Chapter 18: Using &NDBSCAN Statements

This section contains the following topics:

Scan Processing (see page 377)
Control &NDBSCAN Resource Usage (see page 380)
Scan Expressions (see page 380)
SQL-like Operators (see page 388)
Efficient Use of &NDBSCAN (see page 389)

Scan Processing

Note: For more information about the steps taken to process an &NDBSCAN
statement, see the &NDBSCAN verb description in the Network Control
Language Reference Guide.

A scan has the following processing steps:

1. The scan request is parsed, and an action table built. The action table is then
optimized.

2. The action table is processed and, for each action that can be processed
using keys, the key records in the database are used to build intermediate
results.

3. If part of the request could not be processed using keys, the final result list
(from Step 2) is processed by reading records, and each record is validated
against the scan criteria.

If none of the criteria could be processed using keys, the entire database is
scanned.

4. If a sort was requested, the sort keys are extracted from passing records,
and an internal sort is performed.

The final result list is built. Sorting is done during Step 3 or 4 as part of its
processing.

These steps seem complex, but no knowledge of the internal processing is
necessary to use &NDBSCAN. However, when performance is an issue, use of
keyed fields becomes important.

Scan Processing

378 Network Control Language Programming Guide

Display the Generated Scan Action Table

The &NDBCTL statement provides an operand that lets you obtain a display of
the generated scan action table, both before the scan is processed, and after.
This scan debug information can be quite useful for determining why a scan
request does not return the expected records.

To obtain this display, code the following statement prior to the &NDBSCAN
request:

&NDBCTL SCANDEBUG=YES

&NDBCTL MSG=YES or MSG=LOG must be in effect, otherwise no messages are returned.

The first part of the displayed table represents the parsed scan request. Each
relation in the request, for example, X = Y, generates a line in the table. All
generic or range field names are expanded to the full list, and actions to
combine previous results, using AND, OR, or NOT, are shown. The text of the
&NDBSCAN request is also displayed.

The second part of the table, produced after the scan completes, shows how
many records passed each phase, and whether a scan of the actual data was
required.

Process Scan Results

An &NDBSCAN statement can generate a list of the records that pass the
supplied criteria. The list is optional, and, if it is not needed, just the number of
records and the RID of the first passing record can be returned.

This list is treated like a sequence, defined by an &NDBSEQ statement. Records
can be read using the &NDBGET statement, using SEQUENCE=name, where
name is the same name as specified on the &NDBSCAN SEQUENCE=name.

The list can be read forward or backward, and records can be skipped.

The order of records returned is undefined, unless SORT=expression was
specified on the &NDBSCAN statement. This is to allow the scan request to be
optimized. If the scan was sorted, the records are ordered based on the
nominated sort fields, when retrieving FWD.

Scan Processing

Chapter 18: Using &NDBSCAN Statements 379

A sorted scan list that has exactly one full-field sort key, can be repositioned by
&NDBSEQ RESET REPOS, and, as an extra option available only to sequences
built by &NDBSCAN, can be repositioned to the record having a specific RID.

The &NDBSCAN statement lets you specify KEEP=YES, to prevent the scan result
list being deleted when an EOF response is returned by &NDBGET.

Differences Between &NDBSCAN Sequences and &NDBSEQ Sequences

There are some important differences between sequences defined by
&NDBSEQ, and sequences built by &NDBSCAN:

■ &NDBSEQ-defined sequences do not have an in-storage list of records
associated with them. Thus, skipping forward and backward automatically
takes into account record deletions. For example, if you are reading by RID,
and you are positioned on RID 10, a GET FWD SKIP=5 returns RID 15,
assuming RIDS 11-14 all exist. If, while positioned on RID 15, RIDs 12 and 14
are deleted, a GET BWD SKIP=5 does not position you on RID 10, but, rather,
RID 8 (assuming 8 and 9 exist).

&NDBSCAN-built sequences are represented as an in-storage list of RIDs
(the actual order depending on SORT, and so on). If the list is ordered on
RID, the previous example repositions from 10 to 15, and back to 10, as
SKIP=n instructs &NDBGET to skip over n-1 entries in the list. Only when the
target RID has been deleted, does &NDBGET proceed to the next RID in the
list, until a non-deleted record is found.

■ &NDBSEQ-defined sequences each take a small, fixed amount of storage to
hold information about the sequence.

&NDBSCAN-built sequences take storage proportional to the number of
matching records to hold the list. Thus, you should try to minimize the
number of concurrent scan sequences in use, particularly if using
&NDBSCAN in an EASINET procedure.

Control &NDBSCAN Resource Usage

380 Network Control Language Programming Guide

Control &NDBSCAN Resource Usage

Since &NDBSCAN can perform large amounts of I/O, or use large amounts of
storage, particularly when sorting, there are four limits that prevent any one
scan request from tying up excessive resources. They are:

■ Logical VSAM I/O limit

■ Working storage limit

■ Elapsed time limit

■ Passing records limit

These limits are specified using the SYSPARMS command. Each limit can have a
default value, to be applied if an &NDBSCAN does not specify an overriding
value, and a maximum limit, that is always used to constrain the maximum
value which can be coded in any &NDBSCAN.

The &NDBSCAN statement lets you specify overriding values for any of the
limits. These values replace the SYSPARM-specified defaults for that scan. If any
supplied value exceeds the SYSPARM-specified maximum, the SYSPARM
maximum is used.

An &NDBSCAN request that exceeds one of these limits is terminated, and a
response code, indicating which limit was exceeded, is returned. The scan debug
display indicates the limit values assigned to the scan request.

Scan Expressions

A scan request contains a free form text scan expression. This expression
contains:

■ Fields - for example, SURNAME, DOB

■ Values - for example, SMITH, 04/12/58

■ Operators - for example, =, NE

■ Connectors - for example, AND, OR

Parentheses can be used to group parts of the expression.

The expression can be spread across several NCL statements, using the
START/DATA/END syntax, as per the &NDBADD, &NDBUPD, and &NDBFMT
statements. This syntax also allows construction of the scan expression. This is
especially useful in table-driven systems, for example, the features table.

Scan Expressions

Chapter 18: Using &NDBSCAN Statements 381

The expression consists of a number of scan-tests, connected by AND, OR, NOT,
and parentheses. Each test can:

■ Test a field, or list of fields (including generic and range field names), against
a value, list of values, or generic value(s) or against other fields. This is called
a field to field compare.

■ The comparison can use the standard relational operators, for example, EQ,
NE, GT, and =, >, as well as, special operators:

– PRESENT-to test for presence

– ABSENT-to test for absence

– LIKE-to perform a pattern match

– CONTAINS-to test, for character fields, for one field containing a value,
or other field value

■ SQL-like capabilities exist that allow nested scans, where field values from
the inner scans are used as input to the tests in the outer scan(s).

The following are examples of valid scan expressions:

SURNAME = SMITH AND DOB LT 600101

DESC* CONTAINS MVS

DATECLOSED ABSENT OR DATECLOSED DATEOPEN PLUS 5

NAME LIKE 'J% SMITH%'

SEX = 'F' AND (STATUS = 'SINGLE' | STATUS = 'DIVORCED')

SEX = 'F' AND STATUS = ANY 'SINGLE', 'DIVORCED'

The last two expressions are equivalent. The parentheses are required in the
first of these to bind the OR (|) tests together, as AND takes precedence over
OR.

Scan Expressions

382 Network Control Language Programming Guide

Reserved Words

The syntax for a scan expression shows words such as ALL, ANY, FIELDS, and
VALUES. These words are used to indicate options in scan tests. Although it
might appear that these are reserved words, and thus cannot be used as field
names, or unquoted field values, this is not the case.

Note: For more information about the syntax for a scan expression, see the
&NDBSCAN verb description in the Network Control Language Reference Guide.

There are no reserved words in the syntax for a scan expression.

All keywords are resolved by context. That is, if a certain keyword is allowed at a
point in the expression, the presence of that keyword at that point in an
expression is regarded as being that keyword. At any other point, that keyword
is regarded as a name, value, and so on.

For example, the following are valid scan expressions. Keywords are shown in
bold typeface. (Assume that field names and so on are defined.)

FIELD ALL = VALUE ANY

ANY FIELDS VALUE, FIELD, ALL CONTAINS ALL VALUES FIELD, + VALUE, ANY

This can cause some confusion. Obviously, fields names of FIELD, ALL, and so on,
are not recommended.

When generating scan expressions dynamically, it is always a good idea to insert
all the optional keywords, to prevent a syntax error when, for example, a search
value of FIELDS is provided. For example:

&NDBSCAN ... DATA FIELD1 = &SCHVALUE

If the variable &SCHVALUE contained the characters FIELDS, without the quotes,
the scan would fail with a syntax error, as the keyword FIELDS is not followed by
a field name.

To prevent this, the previous example could be coded:

&NDBSCAN ... DATA FIELD1 = VALUE &SCHVALUE

Scan Expressions

Chapter 18: Using &NDBSCAN Statements 383

Null Fields

Null (that is, not present) fields are handled in a special way by &NDBSCAN:

■ A null field never matches a field to value test. A record with field SURNAME
not present is not equal to a supplied value, nor is it not equal to a supplied
value. This 'null result' carries through the scan action table.

■ A null field can only be selected using the ABSENT or IS NULL operators.

This handling of null fields by &NDBSCAN is consistent with other &NDB verbs.
Thus, disjoint record types work as expected.

Field to Field Comparisons

You can compare one field with another in a record. A good example of this is
finding all records with WITHDRAWALS GT BALANCE.

Note: Field to field comparisons involve scanning records. Always try to have
other (keyed) criteria ANDed with these criteria.

When performing field to field comparisons on numeric, float or date fields, an
adjustment amount (taken as a number of days, for date format data), can be
specified. For example, the following statement matches all records where the
field DATECLOSED was greater than the field DATEOPEN plus 10 days:

DATECLOSED GT DATEOPENED PLUS 10

The amount must be an integer; floating point numbers are not supported.

When performing nested scans (sub-selects), you can perform a field-to-field
comparison when one of the fields is the current value in an outer scan. This is
called a correlated query.

Use &NDBQUOTE to Protect Special Characters

The &NDBQUOTE built-in function should be used to protect data values
whenever there is the possibility of delimiter characters (for example, =, &)
being present. This recommendation also applies to arguments supplied in a
scan expression.

Scan Expressions

384 Network Control Language Programming Guide

For example, to search for a value of A=B, use these statements:

&SCHARG = &NDBQUOTE A=B

&NDBSCAN MYNDB SEQ=S1 DATA FIELD1 = &SCHARG

Failure to quote the value results in a syntax error because the equal sign is
treated as a delimiter.

Search for Lowercase Data

An NDB can store character data in lowercase. When a character field is defined,
CAPS=YES is assumed, which means that both the stored data and the key are
folded to uppercase. Two other options are available:

CAPS=NO

The data is left as is, that is, lowercase data is left lowercase, including in the
key. For example, ABC and abc are regarded as different values.

CAPS=SEARCH

The data is left as is, that is, lowercase data is left lowercase. If the data is
keyed, the key is folded to uppercase. Thus, the values ABC and abc are
regarded the same when building a key, but, when data is returned, the
lowercase version is retained.

For &NDBSCAN, CAPS=SEARCH also applies to non-keyed fields for
processing. That is, when reading data records, fields defined with
CAPS=SEARCH are folded to uppercase when they are examined.

Supplied search arguments are retained in lowercase (or as entered), and are
upper cased as required (that is, when comparing to CAPS=YES or CAPS=SEARCH
fields).

Note: &CONTROL NOUCASE must be in effect to preserve lowercase
information supplied on an &NDBSCAN statement.

Scan Expressions

Chapter 18: Using &NDBSCAN Statements 385

CONTAINS

The CONTAINS operator is extremely useful when scanning text in a database.
When combined with generic or range field names, a single expression can
perform quite sophisticated lookups.

Some notes about the use of CONTAINS:

■ CONTAINS involves scanning records. Always try to have other criteria
ANDed with CONTAINS, to reduce the number of records that must be
scanned.

■ The field(s) on the left of CONTAINS are padded at each end with one blank,
for the purposes of searching. This allows words to be searched for, by
providing blanks around your search arguments, without worrying that a
word at the front or back of a field will not be matched. For example, a field
value of A SENTENCE OF WORDS is regarded as A SENTENCE OF WORDS
when processed by CONTAINS. Thus, searching for the value A will succeed,
even though the data does not contain a blank in front of the A.

■ The ANY and ALL keywords allow some requirements for text to be adjacent
to be tested. For example the following statement only matches records
where any one of the fields prefixed by DESC contains both WORD1 and
WORD2:

ANY FIELD DESC* CONTAINS ALL WORD1, WORD2.

If each DESC... field held a sentence, this is equivalent to asking for a
sentence containing both words.

Fields in the same record can contain the search argument(s). Thus, it is
possible to find all records where a given character field in the records is
contained within another character field.

LIKE

The LIKE operator allows pattern matching to be performed. The NOT LIKE
operation does the same, but matches records without the pattern.

The argument string for LIKE can contain any characters except for two special
characters: _ (underscore) and % (percent). These characters only match
themselves (the CAPS=NO/SEARCH rules are honored).

Scan Expressions

386 Network Control Language Programming Guide

The special characters obey the following rules:

■ Underscore (_) matches any one character, but there must be a character in
the data at this position.

■ Percent (%) matches zero or more characters.

These special characters can be used as many times as required in a search
string. Some examples follow:

ABC

Matches only records with ABC in the field.

ABC%

Matches on values starting with ABC

ABC_%

As above, but at least one character must follow ABC

%XYZ

Matches fields ending in XYZ

%mmm%

Matches fields with mmm somewhere in them

%FRED%_%BLOGGS%

Matches a field containing the strings FRED and BLOGGS in that order, with
at least one character between them

_ _ _

Matches a field exactly 3 characters long

_ _XY_%

Matches a field at least 5 characters long, with XY in columns 3 and 4

It is evident that LIKE is a powerful operator and consequently can use
significant CPU resources.

The first two examples in this table can also be done using keys. LIKE attempts
to use keys to fully or partially (whenever a LIKE argument has non-special
leading characters) determine matching records.

Scan Expressions

Chapter 18: Using &NDBSCAN Statements 387

Use the Results of a Previous &NDBSCAN

The syntax, SEQUENCE seqname allows a scan to use as part of its input, the
result list from a previous scan. This avoids having to re-evaluate an entire
previous scan, just to add some more criteria to it.

In interactive applications, this can be very powerful. For example, after
performing a scan based on user input, a panel can be displayed informing the
user of the number of hits. One option the user can have is to add extra criteria,
and see the result of the extra criteria, as applied to the current result list. The
display, extra criteria, and so on, cycle could be repeated. By using the previous
scan as input, large amounts of system resources can be saved. Also, as the user
ascends the nested levels of display, previous results are still valid.

This option is also useful when a scan expression that is too complex to handle
in one statement is needed. It can be broken into parts, and the results
combined.

For example:

&NDBSCAN MYNDB SEQ=S1 DATA SURNAME = 'SMITH'

&NDBSCAN MYNDB SEQ=S2 DATA DOB LT 600101

&NDBSCAN MYNDB SEQ=RESULTS DATA SEQUENCE S1 AND +

 SEQUENCE S2

A scan expression can just include a previous scan result. This is useful when you
want to re-sort a scan result without rebuilding as list. For example:

&NDBSCAN DB2 SEQ=S1 SORT=FIELD1 DATA ...scan expr

&NDBSCAN DB2 SEQ=S2 SORT=FIELD2 DATA SEQUENCE S1

SQL-like Operators

388 Network Control Language Programming Guide

SQL-like Operators

Scans can perform some SQL-like functions:

■ The IS [NOT] NULL operators provide equivalent functionality to the
PRESENT and ABSENT operators, but are SQL-compatible.

■ The [NOT] BETWEEN operators are equivalent to the =value:value and
p=value:value operators, and are SQL-compatible.

■ The [NOT} IN operators are equivalent to the [p]= value-list operators, and
are SQL-compatible.

■ The SELECT clause lets you perform sub-selects, where a list of values
derived from a set of records matching some criteria can be used as input to
an outer-level scan.

The EXISTS operator uses the fact that at least one record exists in the inner
select/scan to determine truth or falsity.

A correlated select is possible. This causes an inner scan to be re-executed once
for each other outer record that passed part of a scan. The outer record field
values are used in the inner scan as comparison values.

Efficient Use of &NDBSCAN

Chapter 18: Using &NDBSCAN Statements 389

Efficient Use of &NDBSCAN

&NDBSCAN can be misused. The scan limits discussed previously are designed
to prevent excessive use of resources. When designing applications that use
&NDBSCAN, the following should be taken into account:

■ Although you can search on any field, use of keyed fields, connected by
AND, at the outer level of the scan expression, greatly reduces I/O and
elapsed time. Even one keyed field can have a significant impact. For
example, the following statement reads every record on the database, if
field NAME has no key:

NAME = 'SMITH' AND ADDRESS CONTAINS 'STREET'

PRESENT and ABSENT use keys if possible. PRESENT makes better use of
keys. LIKE uses keys if there are non-special ('_', '%') characters at the front
of the pattern. It might still need to examine the actual record.

The CONTAINS operator always requires records to be read to evaluate
success or failure. If you are performing many keyword searches of text
using CONTAINS, consider storing the words of the text field as individual,
keyed fields. These can then be searched for directly. For example the
following statement scans the entire database:

DESCRIPTION CONTAINS 'WORD'

If, however, as well as field DESCRIPTION, you had fields
DESCWD01-DESCWD10, all keyed, containing the individual words of the
field DESCRIPTION (&PARSE could be used), you could code the following
statement which could use keys:

ANY DESCWD* = 'WORD'

■ For interactive applications, encourage the use of scan criteria which reduce
the number of hits. If a given scan returns more hits than could be validly
processed by the user, display a message requesting more and/or more
selective criteria. The scan option to use the results of a previous scan can
also be useful in this case.

■ Avoid the use of OR at the highest level of the scan expression, if either side
of the OR involves a non-keyed field, or PRESENT, ABSENT, or CONTAINS-a
full database scan results.

Efficient Use of &NDBSCAN

390 Network Control Language Programming Guide

■ Only use SORT when absolutely necessary. Sorting will normally involve
reading all the records that pass the criteria, extracting the sort field,
performing an in-storage sort, and then building the result list. The sort key
extraction is done concurrently with final record scanning if non-keyed, and
so on, criteria are to be processed.

This processing can consume large amounts of I/O, as well as storage for the
sort keys, and can take significant time.

■ Nested scans (SELECT causes) can use large amounts of storage to store
inner results.

Correlated scans can perform multiple passes over the database. This is
because an inner scan can be called once for every record in the NDB, and it
too can read the NDB, or a large portion of it.

■ If you only want to know whether any records at all have, or have not,
passed the scan criteria, and you are not interested in the exact number or
specific IDs of any such records, then use parameter RECLIMIT=1.
&NDBSCAN RECLIMIT=1 does not set the &NDBRID variable.

■ If sorting is unavoidable, for example, because you need to be able to
reposition in the output sequence, always try to minimize the number of
records passing the scan.

Chapter 19: Using Advanced Program-to-Program Communication 391

Chapter 19: Using Advanced
Program-to-Program Communication

This section contains the following topics:

Advanced Program-to-Program Communication (APPC) (see page 391)
Conversation Allocation (see page 397)
Attach a Procedure (see page 399)
Send Operations (see page 400)
Receive Operations (see page 404)
Error Processing (see page 409)
Conversation Deallocation (see page 410)
&APPC Return Code Information (see page 411)
Application Design (see page 412)

Advanced Program-to-Program Communication (APPC)

The SNA APPC is a high-level application programming interface that allows
program-to-program communications and the development of distributed
applications between network nodes that support Logical Unit type 6.2 (LU6.2).
LU type 6.2 communication facilities form the basis for SAA's Common
Programming Interface for Communications (CPI-C).

In this implementation of APPC, the high-level application programming
interface is provided by the NCL &APPC verb which provides access to a full set
of LU6.2, or APPC, programming capabilities.

These facilities let an NCL procedure communicate with another APPC
application in a structured manner as defined by the LU6.2 protocol. The
partner application can exist within the same, or a remote system, or any other
application system that supports LU6.2 protocols.

Advanced Program-to-Program Communication (APPC)

392 Network Control Language Programming Guide

In addition, this implementation of APPC supports a number of extensions that
assist the development of client/server applications within NCL or spanning
other APPC platforms.

Before writing NCL procedures that use these APPC facilities, you should
familiarize yourself with the fundamental APPC concepts and implementation
procedures. For more information, see the Reference Guide. In addition, see
IBM's Communications Server SNA Programmer's LU 6.2 Reference, which is the
authoritative source for detailing the LU6.2 verb set.

APPC Conversations

NCL procedures (and transaction programs in general) communicate by
establishing a communication path called a conversation. Conversations use
LU6.2 sessions to exchange data and protocols between the communicating
procedures. All conversations consist of three main phases:

■ Conversation initiation (allocation and attach processing)

■ Data exchange (sending and receiving data operations)

■ Conversation termination (deallocation processing)

Once a conversation is allocated to a session, a send-receive relationship is
established between the participating programs. Initially, the procedure that
requested the conversation is allowed to issue send data verbs while the other
procedure issues receive data verbs. This send-receive relationship can change
many times during the life of the conversation.

To terminate the conversation the procedures request deallocation processing,
by issuing the appropriate deallocate verb. The following sections give a
detailed description of the conversation phases and the associated verbs.

Note: This implementation of APPC enables NCL procedures on the same
system to communicate without the need to use SNA sessions. This is a highly
effective means of data transfer between NCL processes.

Advanced Program-to-Program Communication (APPC)

Chapter 19: Using Advanced Program-to-Program Communication 393

LU6.2 Verb Set

The LU6.2 verb set defines a structured means of communication between two
programs. A strict protocol exists at many layers in the LU6.2 implementation,
including the definition of the application verb set and conversation states.
Most APPC requests are handled by the NCL &APPC verb, while conversation
state and other status indicators are accessible to NCL through a range of
system variables.

&APPC Verb

All actions on a conversation are supported through the &APPC verb. The
specific request is identified by the keyword immediately following the &APPC
verb. In general, the keyword identifying each request corresponds closely to
the LU6.2 architected verb syntax such that the specific LU6.2 architected verb
is apparent from the NCL syntax. The relationship between the NCL options and
the LU6.2 architected verb set is described in the reference section for the
particular &APPC request. The set of &APPC requests is as follows:

■ &APPC ALLOCATE_DELAYED

■ &APPC ALLOCATE_IMMEDIATE

■ &APPC ALLOCATE_NOTIFY

■ &APPC ALLOCATE_SESSION

■ &APPC CONFIRM

■ &APPC CONFIRMED

■ &APPC DEALLOCATE

■ &APPC FLUSH

■ &APPC PREPARE_TO_RECEIVE

■ &APPC RECEIVE_AND_WAIT

■ &APPC RECEIVE_IMMEDIATE

■ &APPC RECEIVE_NOTIFY

■ &APPC REQUEST_TO_SEND

■ &APPC SEND_DATA

Advanced Program-to-Program Communication (APPC)

394 Network Control Language Programming Guide

■ &APPC SEND_ERROR

■ &APPC TEST

Note: Your product does not support LU6.2 sync-point processing, and hence
the verbs and states that implement this are unsupported.

Conversation States

Conversations are managed by transition through a number of states. The state
of a conversation is reflected in the &ZAPPCSTA system variable, and can be one
of the following:

■ RESET

■ SEND

■ RECEIVE

■ DEFER_RECEIVE

■ DEFER_DEALLOCATE

■ CONFIRM

■ CONFIRM_SEND

■ CONFIRM_DEALLOCATE

■ DEALLOCATE

Advanced Program-to-Program Communication (APPC)

Chapter 19: Using Advanced Program-to-Program Communication 395

Conversation Processing

Only a small number of verbs are acceptable to NCL from any given
conversation state, otherwise a state error ensues. Following the successful
completion of each verb, either the state remains unchanged, or a single state
transition is possible. This means that the programmer can always determine
the next course of action for the conversation. If verb completion is not
successful then further analysis of the reason, by examination of conversation
status fields, might be required to determine the most appropriate course of
action to follow.

In the simplest analysis, the APPC protocol is a flip-flop communication channel
where, in normal operation, the procedure currently sending controls the data
flow. Hence, the first speaker procedure continues sending data until it decides
to stop. It might decide to stop only when all data has been sent. For example,
after sending a request for a database query, to reverse the direction of data
flow and receive the response. Or it might pause during transmission to request
confirmation (actual receipt by the partner procedure) of that portion of the
data sent so far.

Only when the current speaker changes direction can the partner procedure
send data the other way. However, if some condition arises that is generally
unrecoverable, an error indication can be sent to the current sender to cause
transmission to cease, and allow the current receiver to enter send state.

Within your product, all information being sent is buffered until enough data is
accrued to warrant transmission, or the need for some application response
dictates that an actual network transmission take place. This provides for
efficient use of network resources, but means that to synchronize local and
remote processing, the application must manage the protocol appropriately.
This is achieved through use of the confirmation protocols.

Return Codes and System Variables

Following each verb the &RETCODE and &ZFDBK system variables are set to
indicate the success or otherwise of the &APPC request.

In addition, for each conversation, a set of system variables is maintained that
provides information concerning the conversation status:

&ZAPPCELM

Message from an error log GDS variable

Advanced Program-to-Program Communication (APPC)

396 Network Control Language Programming Guide

&ZAPPCELP

Product set information from an error log GDS

&ZAPPCID

Conversation identifier

&ZAPPCIDA

The conversation identifier for the transaction that started the NCL process

&ZAPPCLNK

Local link name

&ZAPPCMOD

Session mode name

&ZAPPCQLN

Network qualified local luname

&ZAPPCQRN

Network qualified remote luname

&ZAPPCRM

Current receive map name

&ZAPPCRPI

Received protocol indicators

&ZAPPCSM

Current send map name

&ZAPPCSTA

Conversation state

&ZAPPCSYN

Conversation sync_level

&ZAPPCTYP

Conversation type

&ZAPPCWR

What_received indicator

&ZAPPCWRI

What_received short indicator

Conversation Allocation

Chapter 19: Using Advanced Program-to-Program Communication 397

&ZAPPCRTS

Request_to_send indicator

&ZAPPCTRN

Transaction identifier

Conversation Allocation

An executing procedure establishes a communication path, termed a
conversation, by the process known as allocation. An allocation request is
deemed to take place from reset state, and can be issued as one of the
following verb options:

■ &APPC ALLOCATE_SESSION (or just &APPC ALLOCATE)

■ &APPC ALLOCATE_DELAYED

■ &APPC ALLOCATE_IMMEDIATE

■ &APPC ALLOCATE_NOTIFY

Transaction Identifier

One of the parameters supplied on the allocate verb is the TRANSID (transaction
identifier) which directs your product to the APPC Transaction Control Table, or
TCT. An appropriate TCT entry for the transaction must be located or the
conversation fails. The TCT entry is used to verify the request before further
information is extracted to complete the request if necessary.

Destination Selection

The TCT entry can contain default destination information, by way of a link
name or network LU name, to be used for the request. However the LINK or
LUNAME parameters on the allocate verb can be used to override any TCT
destination information (and will be required if the TCT has no default
destination information).

Once a destination has been isolated resources are allocated to set up the
communication path, and eventually a procedure or program is attached in the
target system to service the request.

Conversation Allocation

398 Network Control Language Programming Guide

If the target system is the local system, an NCL procedure is started as an
attached procedure. Such procedures are generally written to perform a specific
function, or possibly a range of functions, on behalf of the invoking procedure.

If the target system is outside of the local system, an SNA LU6.2 session
connecting the remote destination must be located. This session is then
allocated to the conversation for the conversation duration. The fact that a
session is interposed between the communicating procedures is completely
transparent to the allocating procedure.

Allocation and Sessions

To complete an allocation to a remote destination a session is required. If no
session to that destination currently exists, then for all requests except &APPC
ALLOCATE_IMMEDIATE, an attempt will be made to establish an APPC link to
the remote LU. Other than the fact that it is an automatic link activation
request, the result is no different from an operator starting a link by command.

For the &APPC ALLOCATE_SESSION and ALLOCATE_NOTIFY requests, the verb
will not complete until a session can be assigned for the conversation. This can
involve waiting for new sessions to be established, or waiting for active
conversations to end and free up a session.

For the &APPC ALLOCATE_DELAYED request, a delayed session assignment is
allowed. The verb completes as though a session can be assigned and
processing continues. However, if transmission is actually required at some
stage, the procedure will be suspended until session assignment can be
performed.

The &APPC ALLOCATE_IMMEDIATE request only completes successfully if a
session can be guaranteed immediately for transmission.

Set Program Initialization Parameters

User data can be passed as parameters on the allocate verb. These can be in the
form of one or more NCL tokens. Each NCL token passed as a parameter on the
allocation will appear as a separate parameter in the remote end. These
parameters are available to the attached procedure as program initialization
parameters, described in the next section.

Attach a Procedure

Chapter 19: Using Advanced Program-to-Program Communication 399

Allocation Completion

After a successful allocation, the procedure is placed in send state and the
&ZAPPCID system variable is set to provide the identifier of the conversation
created. More than one conversation can be allocated and operated
concurrently by a single NCL procedure.

Note: The allocation can complete without any transmission taking place, and
hence the procedure enters send state before the target procedure is invoked
to service the request.

Attach a Procedure

At some time following allocation, data is actually transmitted to the target
system in the form of an attach request.

When an attach request is received by your product, the TCT is examined to
locate the procedure that will service the request. The procedure is said to be
attached and a copy of the procedure is invoked as a new NCL process.

Client/Server Terminology

Client/server processing lends itself well to the use of APPC as a protocol. For
this reason, the term client is often used to mean the allocating procedure, and
server to mean the attached procedure. Many of the &APPC verb extensions are
designed to support the client/server model.

Execution Environment

If the conversation is executed as an unsecured transaction, the procedure will
execute in the background server (BSVR) environment. Otherwise an APPC user
region is located (or created and signed on if none exists), for the user ID carried
in the attach request, and the procedure started within that user region. When
no further NCL activity exists in an APPC user region it is signed off and deleted.

Send Operations

400 Network Control Language Programming Guide

Access Program Initialization Parameters

Once attached, the NCL procedure begins execution as any other NCL
procedure, except that it already has an active conversation.

If program initialization parameters were passed on the allocation request, they
are accessible as the standard NCL parameters &1 &2 &3through to &n in the
usual manner. Each token represents a single passed parameter and hence the
data available is limited to the current maximum token size.

Attach Processing

The conversation that attached the procedure is identified by the &ZAPPCIDA
system variable and is also the current conversation identified by the &ZAPPCID
system variable. The procedure is in receive state on this conversation. An
attached procedure has access to all the usual NCL facilities and can allocate
further conversations if desired.

Send Operations

Data can be sent on a conversation only from send state. Send state is entered
in one of the following ways:

■ Automatically following a successful allocation

■ At any time when the remote conversation partner that is currently sending
decides to stop sending and enter receive state, thereby placing the local
end in send state.

■ After issuing a SEND_ERROR which forces send state locally

Send Data

The only verb used to send data is:

&APPC SEND_DATA

Data can be in the form of one or more NCL tokens, or it can be a Mapped Data
Object, or MDO. Even where multiple tokens are identified on the send
operation, they are packaged as a single unit of transmission, called a GDS
variable, to the remote end where they will eventually become available from a
single receive request.

Send Operations

Chapter 19: Using Advanced Program-to-Program Communication 401

There is no limit to the number of variables or MDOs, or total size of the GDS
variable used for transmission.

Following a successful send data operation the conversation remains in send
state. Otherwise the return code information should be examined for details on
the send failure.

Data Mapping Support

APPC can send a map name of up to 64 characters as control information when
data is sent. This map name is used by the remote system to interpret the
contents of the data transmitted and indicates how it should build any local
data structures.

Data Mapping for NCL Tokens

When sending NCL tokens, a map name of $NCL is sent by default with the data
to indicate that the data is comprised of one or more NCL tokens. If the
receiving system understands the $NCL structure, it can decompose the
datastream into the individual tokens sent. In this way NCL allows a single send
to specify multiple tokens as a range or list, and in the target system a single
receive can re-create such a range or list. For example, the request:

&APPC SEND_DATA VARS=A* RANGE=(1,10)

can be sent, and satisfies a remote request:

&APPC RECEIVE_AND_WAIT VARS=B*

such that the variables B1,B2,...,B10 in the remote system are created with the
same values as A1,A2,...,A10 in the sending system.

You can override the map name sent. However, if a map name other than $NCL
is specified the tokens are not structured as above for output, but are simply
concatenated together to form the single GDS variable which is the unit of
transmission. When communicating with a non-NCL system, this may let you
construct the appropriate pieces of the data in separate tokens before sending
them as a single datastream. The interpretation of the block of data received in
the remote system is then implied by the map name sent.

Send Operations

402 Network Control Language Programming Guide

Data Mapping and Mapping Services

When sending data from an MDO, the MDO name specified determines the
length of the data unit to be sent. The map name sent by default is the fully
qualified map name hierarchy as defined to Mapping Services.

For example, if a CNM alert record was in an MDO named NEWS, mapped by
the map named CNM, then the second Product Set Identifier sub-vector within
that record might be referenced from NCL as:

NEWS.NMVT.ALERT.PSID{2}

If the Product Identifier sub-vector within it was the subject of a send operation
it can be sent by:

&APPC SEND_DATA MDO=NEWS.NMVT.ALERT.PSID{2}.PRODID

However, the fully qualified map name hierarchy for the object is:

CNM.NMVT.ALERT.PSID.PRODID

as defined to Mapping Services, and this will be the map name sent. If the target
system understands this mapping hierarchy it will reconstruct the MDO and
map it accordingly. For example a receive request of:

&APPC RECEIVE_AND_WAIT MDO=NEWSREC

would result in the object being:

NEWSREC.NMVT.ALERT.PSID.PRODID

Note: All name instances are now implied to be 1, as only the second PSID
instance was selected for the send. No data existing in any of the elements of
the intervening name segments is sent, however the qualified names are sent to
provide the context of the actual data transmitted.

If the entire MDO had been sent, for example:

&APPC SEND_DATA MDO=NEWS

then both PSIDs would be received and the entire NEWSREC structure received
would be identical to the NEWS structure sent.

Again, you can choose to override the map name sent, allowing the target
system to implement data interpretation independently.

Send Operations

Chapter 19: Using Advanced Program-to-Program Communication 403

Send Data When Data Mapping Is Not Supported

Not all LU6.2 systems support data mapping. If data mapping is not supported
(as defined in the Option Set Control Table selected for the destination system)
then no map names are sent and all data sent is always transmitted as is.

If a number of tokens are specified on the SEND_DATA request then they are
simply concatenated together to form the single unit of data transmission. If an
MDO is sent then the data from the MDO comprises the entire data unit. The
structure of this data unit, and its interpretation in the remote system are the
responsibility of the application developer.

Request Confirmation of Data Sent

While in send state a procedure can request confirmation of any data sent. This
is achieved by the verb:

&APPC CONFIRM

Processing is suspended until the remote procedure has received all data sent
up until that point and receives the confirmation request. The normal response
is:

&APPC CONFIRMED

This response indicates that all data was received and processed normally. The
receipt of the confirmed response satisfies the confirm request and allows the
sending procedure to continue processing in send state.

Force Data Transmission

If deemed necessary by the procedure it can, while in send state, force the
transmission of any data buffered by APPC with the request:

&APPC FLUSH

All queued data is scheduled for transmission by this request, however it is
usually unnecessary as data will be transmitted as it accumulates during normal
send operations. When a reasonable amount of data is buffered, or if requests
which require some response (such as an &APPC CONFIRM) are issued, then a
transmission is scheduled automatically by the system. A flush operation does
not alter the state.

Receive Operations

404 Network Control Language Programming Guide

Switch State from Send to Receive

When a procedure has completed all send operations and expects some
response data from the conversation partner it can switch from send to receive
state by issuing:

&APPC PREPARE_TO_RECEIVE

&APPC PREPARE_TO_RECEIVE TYPE=FLUSH

&APPC PREPARE_TO_RECEIVE TYPE=CONFIRM

If no type is specified then it will default to FLUSH if the conversation has a
sync_level of NONE, or CONFIRM if the conversation has a sync_level of
CONFIRM (as set by the allocation request and reflected in the &ZAPPCSYN
system variable).

The FLUSH option simply ensures all data is sent to the other end with a request
to change direction. For the CONFIRM option the remote procedure must issue
an &APPC CONFIRMED request before the verb completes and receive state is
entered.

If data is expected in response then a confirmation can usually be avoided by
simply issuing, from send state, either request:

&APPC RECEIVE_AND_WAIT

&APPC RECEIVE_NOTIFY

These requests will perform an implied &APPC PREPARE_TO_ RECEIVE
TYPE=FLUSH before placing the procedure in receive state.

Receive Operations

Data can be received on a conversation only while in receive state. Receive state
is entered in one of the following ways:

■ Automatically when a procedure is attached by an allocation request

■ At any time when the procedure decides to stop sending and enter receive
state voluntarily

■ When an error is received from the remote system, forcing the local
procedure into receive state

Receive Operations

Chapter 19: Using Advanced Program-to-Program Communication 405

Receive Data

The verb options available for requesting received data are:

&APPC RECEIVE_AND_WAIT

&APPC RECEIVE_IMMEDIATE

while an asynchronous notification that data has been received (without
actually receiving it into target variables) can be requested by:

&APPC RECEIVE_NOTIFY

Following notification, the RECEIVE_IMMEDIATE request can be used to retrieve
the data. When data is received, it can be placed in one or more tokens, or into
an MDO.

Following a receive operation the &ZAPPCWR and &ZAPPCWRI indicators are
set explaining the nature of the data received. It is possible to get a successful
receive (&RETCODE 0) when no data is placed into the target variables.
However the what-received indicator could show that some request, such as a
confirm, has been received and hence the procedure should issue the &APPC
CONFIRMED response.

Receive Operations

406 Network Control Language Programming Guide

Receive Data into NCL Tokens

Either a list or range of NCL tokens can be specified as the target variables for a
receive operation. For example:

&APPC RECEIVE_AND_WAIT VARS=$* RANGE=(1,20)

&APPC RECEIVE_AND_WAIT VARS=(A,B,C,D)

The contents of each variable will be set depending upon the data mapping for
the conversation. If no mapping is supported, or if the map name is other than
$NCL, then the received GDS variable (which is the unit transmitted) is
segmented according to the maximum token size by default. You can specify
individual segment sizes when using the list form by specifying a parenthesized
integer after each variable name, for example:

&APPC RECEIVE_AND_WAIT VARS=(A(10),B(8),C(4),D(32))

If mapping is supported and the map name is $NCL, then the received GDS
variable, which is the unit transmitted, is assumed to be correctly formatted by
the sending NCL system. Its structure maintains the contents of the individual
tokens that were specified on the send operation, and the target variables are
reconstructed identically.

In any case, no data transformation takes place. If the transmitted data contains
characters that cannot be displayed, subsequent processing might require its
conversion to hexadecimal characters (through the &HEXEXP built-in function).
This is your responsibility.

If insufficient variables are supplied to receive all the data transmitted in the
data unit, the residual data is lost.

Note: The received map name is in the &ZAPPCRM system variable.

Receive Operations

Chapter 19: Using Advanced Program-to-Program Communication 407

Receive Data into an MDO

As an alternative to the use of NCL tokens an MDO can be specified as the target
for a receive operation, for example:

&APPC RECEIVE_AND_WAIT MDO=APPCREC

The MDO is structured depending upon the data mapping for the conversation.
If no mapping is supported, or if the map name is unknown to Mapping Services,
then the data from the received GDS variable which is the unit transmitted
forms the entire contents of the MDO. The MDO is unmapped, but the MDO
name refers to the entire data transmitted.

If mapping is supported and the map name is known, then the data from the
received GDS variable which is the unit transmitted, is assigned into the MDO,
specified according to the map name received. If the map name consisted of
more than one name segment, then the first name segment is assumed to be
the actual map name, and the remaining segments qualify the data in the usual
Mapping Services manner.

For example, if the map name received was:

CORPORATE.PAYROLL.EMPLOYEE

and the receive specified was:

&APPC RECEIVE_AND_WAIT MDO=USER

then the MDO structure named USER.PAYROLL.EMPLOYEE and mapped by the
Mapping Services map name CORPORATE, is assigned the received data.
However if the map name CORPORATE was unknown to Mapping Services then
the MDO structure named USER contains all the data and it is unmapped.

You can determine the received map name through the &ZAPPCRM system
variable and process the MDO contents accordingly. For example, if a
transmitted map name is unknown to Mapping Services, or is an invalid
Mapping Services map name, the data can be placed into an unmapped MDO.
The map name is then examined and the MDO assigned to a new structure with
Mapping Services mapping through the &ASSIGN verb.

Receive Operations

408 Network Control Language Programming Guide

Respond to a Confirmation Request

Following a receive operation, the &ZAPPCWR might indicate that a confirmed
response is required if the &ZAPPCWR value is:

CONFIRM

CONFIRM_SEND

CONFIRM_DEALLOCATE

in which case the procedure can respond:

&APPC CONFIRMED

after which receive state, send state, or deallocate state is entered respectively.

Receive a Send Indication

Following a receive operation, the &ZAPPCWR can indicate that the local
procedure has entered send state if the &ZAPPCWR value is SEND. This indicates
that the remote end has completed its send operations and has entered receive
state.

Receive a Deallocation Indication

Following a receive operation, the &ZAPPCWR can indicate that the
conversation has been terminated unconditionally by the remote procedure. In
this case &RETCODE 4 is returned, and the &ZAPPCWR value is DEALLOCATE,
the only allowable action is to issue:

&APPC DEALLOCATE TYPE=LOCAL

after which all conversation information is removed from the system.

Error Processing

Chapter 19: Using Advanced Program-to-Program Communication 409

Error Processing

Either conversation partner can send an error indication at any time by issuing
&APPC SEND_ERROR.

When issued from send state, the remote end (in receive state) will get a return
code indicating program_error_no_truncation, and &RETCODE is 8. This
indicates that the error sent did not cause any loss of data. No state changes
occur.

When issued from receive state, the remote end (in send or receive state) will
get a return code indicating program_error_purging, and &RETCODE is 8. This
indicates that the receiver is purging all subsequent data sent and the sender
has an obligation to enter receive state (if it has not already done so).

The effect of a SEND_ERROR is to halt communication and place the error
sender in send state. However it should be used with discretion as it is most
disruptive of normal data flows. Usually a reason for the error will follow as a
normal data send operation.

Some errors can be detected by the APPC Services layers, and will appear as
svc_error_purging and so on. For example, if a procedure which is one end of a
conversation terminates abnormally, a deallocate abend condition is raised and
an error notification is sent to the other partner. A message accompanies such a
condition and will appear in the log of the remote system. It can be accessed
through the &ZAPPCELM system variable before the &APPC DEALLOCATE
TYPE=LOCAL statement is issued.

Conversation Deallocation

410 Network Control Language Programming Guide

Conversation Deallocation

Regardless of which end started a conversation, any procedure can terminate it
from send state by issuing one of the deallocate requests:

&APPC DEALLOCATE

&APPC DEALLOCATE TYPE=FLUSH

&APPC DEALLOCATE TYPE=CONFIRM

&APPC DEALLOCATE TYPE=ABEND

If no type is specified, then it will default to FLUSH if the conversation has a
sync_level of NONE, or CONFIRM if the conversation has a sync_level of
CONFIRM (as set by the allocation request and reflected in the &ZAPPCSYN
system variable).

A TYPE=CONFIRM deallocation is conditional upon the remote procedure issuing
an CONFIRMED response. The only other valid response is a SEND_ERROR,
which means the conversation remains active and the error sender is placed in
send state. If &RETCODE of 0 is returned the deallocation was successful.

A TYPE=FLUSH or TYPE=ABEND is unconditional as long as the request is
accepted. A &RETCODE of 0 indicates that the conversation is terminated.

Sample Conversations

A set of simple APPC conversations illustrating the use of the &APPC verb is
provided in the distributed sample library.

More information:

Run the Sample APPC Conversations (see page 542)

&APPC Return Code Information

Chapter 19: Using Advanced Program-to-Program Communication 411

&APPC Return Code Information

All &APPC verb options complete by setting a number of NCL variables with
return code information.

General completion information is contained within the &RETCODE system
variable, and is qualified by the &ZFDBK system variable. &RETCODE values of 0
and 4 occur in normal operation, while &RETCODE values of 8 or higher indicate
an error condition. If an error is detected, the &SYSMSG user variable is set
providing an explanation of the error condition.

A number of APPC system variables are available providing information about
the current conversation being operated. For example, following a receive
operation the &ZAPPCWR and &ZAPPCWRI (what-received indicators) provide
information about what satisfied the receive.

For more information about &RETCODE and &ZFDBK system variable settings,
see the &APPC verb description in the Network Control Language Reference
Guide.

Application Design

412 Network Control Language Programming Guide

Application Design

An important aspect of APPC programming is the consideration of application
design. The protocol and verb set provided by APPC does not dictate a specific
mode of use and can be flexibly adapted to a number of situations. In this sense,
the application's use of the APPC verb set should be considered as part of the
overall application design, and this further implies that the application spans the
conversation.

Thus what is ostensibly a single application can be split into two (or more)
procedures which communicate using the NCL &APPC verb. This form of
application lends itself well to client-server type roles. Commonly, the client
procedure will act as the man-machine interface, providing the presentation
aspects of the application.

The server procedure can deal with the data organizational aspects of the
application, fetching and returning to the presentation procedure one or more
records depending upon the request.

There are some important advantages in this approach:

■ The code for handling the functional or presentation aspects is physically
separate from the code for dealing with data organization aspects. This
simplifies the processing required in each part, and assists future
maintenance. For example, the server procedure could be completely
replaced at any stage to handle a new database or file system.

■ As the code is separate, the procedures can be executed in different
systems without any change to the application. For example, the client end
can always reside in a work station while the server end is in a host system.
However, they can also execute within the same system. An additional
advantage is that should a server procedure need to be moved to another
system, for example if a database has been moved, then no code changes
are necessary. Simple changes to the APPC Control Tables can be used to
redirect transactions to the new system.

■ Procedures are executed on demand. Rather than initializing a process to
wait for work, the required procedure can be attached when a demand for
its services is received.

More information:

APPC Client/Server Processing (see page 419)

Chapter 20: Advanced Program-to-Program Communication Extensions 413

Chapter 20: Advanced Program-to-Program
Communication Extensions

Your product offers a number of extensions to assist in establishing
communications using client/server processing concepts. These extensions
assist in application development between different platforms, but might not be
supported by other products which implement APPC.

This section contains the following topics:

APPC Extended Verb Set (see page 414)
APPC Transactions (see page 415)
APPC Client/Server Processing (see page 419)
Server Processes (see page 420)
Client/Server Connection Mode (see page 421)
Transfer a Conversation (see page 424)

APPC Extended Verb Set

414 Network Control Language Programming Guide

APPC Extended Verb Set

The following verbs are available to the APPC in your product:

■ &APPC ATTACH_DELAYED

■ &APPC ATTACH_IMMEDIATE

■ &APPC ATTACH_NOTIFY

■ &APPC ATTACH_SESSION

■ &APPC CONNECT_DELAYED

■ &APPC CONNECT_IMMEDIATE

■ &APPC CONNECT_NOTIFY

■ &APPC CONNECT_SESSION

■ &APPC DEREGISTER

■ &APPC REGISTER

■ &APPC RPC

■ &APPC SEND_AND_CONFIRM

■ &APPC SEND_AND_DEALLOCATE

■ &APPC SEND_AND_FLUSH

■ &APPC SEND_AND_PREPARE_TO_RECEIVE

■ &APPC SET_SERVER_MODE

■ &APPC START

■ &APPC TRANSFER_ACCEPT

■ &APPC TRANSFER_CONNECT

■ &APPC TRANSFER_REJECT

■ &APPC TRANSFER_REQUEST

APPC Transactions

Chapter 20: Advanced Program-to-Program Communication Extensions 415

APPC Transactions

In addition to user-defined transactions, the APPC in your product supports a
number of system transactions that assist in NCL communication, especially in
the area of client/server processing. These transactions are as follows:

START

This is used to initiate a new NCL process in either the local or a remote
system

RPC

This is used to call a procedure in either the local or a remote system in the
manner of a remote procedure call

ATTACH

Establishes a standard APPC conversation by attaching an NCL procedure by
name, rather than indirectly through a transaction identifier

CONNECT

Establishes a conversation connection to an existing NCL process in either
the local or a remote system.

These system transactions are automatically defined in the Transaction Control
Table during system initialization, but can be modified by the installation if
necessary using the REPTRANS, DELTRANS and DEFTRANS commands.

APPC Transactions

416 Network Control Language Programming Guide

START Transaction-Remote Process Start

The APPC in your product incorporates the system START transaction that
allows any NCL procedure to be started as a new process through the &APPC
START request. For example:

&APPC START PROC=proc DOMAIN=test ...

The system TCT entry for the START transaction is used to complete the
conversation setup options, including the transaction security requirements.

Any procedure that is designed to be started through the usual START command
can be started in this manner by using APPC. The started procedure need not be
aware that it was started through APPC. It has no access to the APPC
conversation that established the new process and has no requirement to use
any APPC facilities.

The new process can be created in any of the following ways:

■ As a dependent process (of the requesting process) in the local region

■ As an independent process within the same region as the requesting
process

■ As an independent process within any APPC region (where authorized) in
the local APPC system

■ As an independent process within any APPC region (where authorized) in
any connected product APPC system

The initiating process can request an immediate indication of the success or
failure of the new process creation. It can pass the usual procedure initiation
parameters to the target procedure. In addition, any subset of NCL variables, or
MDO data, can be copied from the environment of the initiating procedure to
that of the new process. Once the request completes all links between the
initiating process and the new process are lost, and the new process operates
completely independently of the initiating process.

Note: When a process is started as a dependent process, the usual NCL
relationships hold true.

APPC Transactions

Chapter 20: Advanced Program-to-Program Communication Extensions 417

Remote Procedure Call (RPC) Transaction

The APPC in your product incorporates the system RPC transaction that allows
any NCL procedure to be executed from the context of the calling procedure
through the &APPC RPC request. For example:

&APPC RPC PROC=proc LINK=link23 PARMS=(A,B,C)

The system TCT entry for the RPC transaction is used to complete the
conversation setup options, including the transaction security requirements.

Many procedures that are designed to be called from another procedure
through the usual EXEC command can operate successfully in this manner using
APPC. However, the only context that can be transferred between the calling
procedure and the remote procedure, is in the form of NCL variables and MDO
data. All other resources in the calling environment (such as files, internal read
queues, and so on) remain the strict domain of the calling procedure. The called
procedure need not be aware that it was started by using APPC, has no access
to the APPC conversation that established the call path, and has no requirement
to use any APPC facilities.

The target procedure is started as an independent process in the same or any
connected product APPC system, with the context passed. The calling procedure
is suspended until the remote procedure completes its execution and
terminates. However, the called procedure need not be aware that it was
invoked via a remote procedure call.

When the remote procedure terminates, control is returned to the calling
procedure with an indication of the success or failure of the request. Shared NCL
variable information can be passed back on return. If the called procedure
terminates abnormally, or APPC communication is lost to a remote system, the
appropriate error information is returned.

The new process can be created in any of the environments allowed for a
remote process start.

APPC Transactions

418 Network Control Language Programming Guide

ATTACH Transaction-Allocate a Procedure

The APPC in your product incorporates the system ATTACH transaction that
allows any NCL procedure to be attached and establishes the usual APPC
conversation connection. For example:

&APPC ATTACH PROC=proc DOMAIN=test

This form of allocation proceeds as a special internal transaction. It sets up the
conversation with the nominated procedure without the requirement to set up
a Transaction Control Table entry for the procedure. The system TCT entry for
the ATTACH transaction is used to complete the conversation setup options,
including the transaction security requirements.

Note: This form of allocation can be useful between systems where the
procedure name is obtained indirectly, but should not be thought of as a
general replacement for the use of the Transaction Control Table.

Once started, the conversation is available in the attached procedure, exactly as
it would had a standard allocation request been issued. The conversation is
operated by both partners in the usual manner.

CONNECT Transaction-Connect to an Active Process

The APPC in your product incorporates the system CONNECT transaction that
requests a connection between the a client procedure and any other active NCL
process to act as a server. It establishes the usual APPC conversation
connection. For example:

&APPC CONNECT NCLID=nclid DOMAIN=test

This form of allocation proceeds as a special internal transaction, and sets up
the conversation between the client and the nominated server process if
permitted by the server. The system TCT entry for the CONNECT transaction is
used to complete allocation options.

Note: The process must be active or the conversation will terminate with an
allocation failure.

Once connected, the conversation is available in the target procedure exactly as
it would had a standard allocation request been issued. The conversation is
operated by both partners in the usual manner.

APPC Client/Server Processing

Chapter 20: Advanced Program-to-Program Communication Extensions 419

APPC Client/Server Processing

APPC is a general application protocol for communication between any two
programs in an SNA environment. It can be used to deliver data in substantially
one direction-such as a file transfer. It can be used for a complicated dialog-such
as a terminal to application datastream. However, it can be easily adapted to
implement communication along the client/server processing model.

The usual model of client/server processing is that there are potentially many
clients, and usually a smaller number of servers, in a distributed processing
environment. The clients request information and they are served that
information by a server. A simple question, followed by one or more related
responses, is an example of this approach, however the actual dialog could be
more complicated.

Ideally the client does not nominate the server, but merely requests a particular
type of service, and depending upon configuration options, the transaction will
be directed to an appropriate server for processing.

Server Processes

420 Network Control Language Programming Guide

Server Processes

A server is a single NCL process that can accept connections from one or more
clients, either serially or concurrently, at the server's discretion. Registration of
the server is successful if the server name is unique within some scope, as
determined by the server name registration request. Registration of the server
name can be tied to process creation such that if the registration is unsuccessful
the process creation fails. Alternatively, an executing process can attempt to
register itself as a server at any time.

A transaction that starts an NCL procedure can now indicate, through the
Transaction Control Table, that, once attached, the target NCL procedure is to
be registered as a server process. A server process can also be started by the
usual START command before any communication is necessary.

In general, any NCL process, regardless of whether or not it has a registered
server process name, can in fact behave as a server process. That is, any active
NCL process can accept client connections. Server name registration provides a
mechanism for preventing duplication of server processes, but, more
importantly, assists in targeting the correct server by supplying a meaningful
name. While a server is active, new transactions can target the process and
request connection. Such transactions can, at the server's discretion, be queued
to the server through the APPC transfer mechanism in your product or
automatically connected to the server for immediate operation.

Any process that has a registered server name can be targeted, by defining
transactions in the TCT that allocate that particular server name. If the server is
not active, the first transaction selecting a TCT entry for that server name will
start the server process. Subsequent transactions locate the active server
process and queue a connection request. Any user defined transaction can
target a server in this manner. In addition, the ATTACH and CONNECT
transactions allow a server to be targeted by the requestor.

Client/Server Connection Mode

Chapter 20: Advanced Program-to-Program Communication Extensions 421

Client/Server Connection Mode

During server process creation and initialization, all client connection requests
that target the process remain pending until the server declares its operational
mode for client connection. It can choose to automatically accept new
connections, request notification before accepting connections, or reject
connections.

Connections only apply to new conversations targeting an active process such
as:

■ Any standard transaction where the TCT entry indicated a server name as
target, and the server is active

■ Any ATTACH transaction that targets a server name, and the server is active

■ Any CONNECT transaction that always targets an active NCL process

However an explicit conversation transfer request, resulting from an &APPC
TRANSFER operation, is not considered a connection request and its mode of
operation is unchanged.

The connection mode chosen by the server depends upon whether it intends to
serialize connection processing, or operate multiple conversations concurrently.
It can also depend on whether the server makes any use of the PIP data
sometimes present with new conversations.

Client/Server Connection Mode

422 Network Control Language Programming Guide

Automatic Connection Mode

The server declares it will operate in automatic connection mode by issuing the
following statement after process initialization:

&APPC SET_SERVER_MODE CONNECT=ACCEPT

or

&APPC REGISTER SERVER=server CONNECT=ACCEPT

Following this statement any pending connection requests, or any subsequent
connection requests, are automatically connected to the server and available to
operate immediately in receive state. When using this mode no access to the
PIP data, if present, for a new conversation is available. Hence this mode of
operation is unsuitable for servers that service transactions making use of PIP
data.

Since all new conversations connect in receive state, after an automatic
connection they would satisfy a receive request that specifies any active clients.
For example:

&APPC RECEIVE_AND_WAIT ID=CLIENTS VARS=A*

or

&APPC RECEIVE_NOTIFY ID=CLIENTS

Any conversation that connected to the server, that is any client conversation,
can satisfy such a receive. However, conversations started by the server, even if
they are in receive state, do not satisfy these requests. In either case a new
connection, or an existing conversation where more data had just arrived, could
satisfy the receive request.

Conversations are serviced in the order that data arrives. The actual
conversation satisfying the receive is identified by the usual &ZAPPCxxx system
variables. The server, having received some data, can choose to operate that
conversation specifically to satisfy the client, before issuing the generic receive
against all clients to process the next item of work, thus serializing server
activity.

Client/Server Connection Mode

Chapter 20: Advanced Program-to-Program Communication Extensions 423

Notification Mode

As an alternative, the server can declare it will operate in notification mode by
issuing:

&APPC SET_SERVER_MODE ... CONNECT=NOTIFY

or

&APPC REGISTER ... CONNECT=NOTIFY

Once this mode is set any pending connection requests, or any subsequent
connection requests, are notified to the server by an event message being
queued to the process's internal environment. This message is the same as that
created by a transfer request from another process, and the server accepts or
rejects these connections in the same manner as a transfer request. An
&INTREAD statement can be used to receive the notification, informing the
process of the conversation identifier that is pending connection. The server can
choose to accept the connection request and begin processing the transaction.
For example:

&APPC TRANSFER_ACCEPT ID=&id VARS=PIP*

In this case, it is possible for the server to obtain any PIP data present in the
attach request. However, the server might choose to reject the new transaction.
For example:

&APPC TRANSFER_REJECT ID=&id RETRY=YES

This is manifested in the remote allocation system as an allocation failure, with
a reason of either:

TRANS_PGM_NOT_AVAIL_RETRY

or

TRANS_PGM_NOT_AVAIL_NO_RETRY

If the connection is accepted, the conversation is connected in receive state and
is operated in the usual manner. This form is most useful when the server is to
continue to operate in notification mode, by using the asynchronous form of
receipt. For example:

&APPC RECEIVE_NOTIFY ID=CLIENTS

Transfer a Conversation

424 Network Control Language Programming Guide

Rejection Mode

Servers can optionally mask off further connections by setting the connection
mode to reject, as follows:

&APPC SET_SERVER_MODE CONNECT=REJECT RETRY=NO

In this case the RETRY option can be YES or NO, and subsequent connections are
rejected as for a transfer reject. This can be useful where the server is
terminating to indicate whether or not processing can be retried.

Transfer a Conversation

Your product supports some implementation-specific &APPC verb options that
allow an active conversation to be transferred from one NCL process to another.
These are as follows:

&APPC TRANSFER_REQUEST

&APPC TRANSFER_ACCEPT

&APPC TRANSFER_REJECT

The TRANSFER_REQUEST option requires that a target NCL identifier be
specified. This NCL process is then notified of the transfer request by a message
queued to its internal environment. It can accept or reject the conversation
transfer (as indicated by the syntax shown previously) which completes the
transfer request. After the transfer, the requesting procedure has no access to
the conversation.

A transfer can only take place while the conversation is in send or receive state.
Most likely this is immediately following the completion of an allocate or attach
request. Using this technique it is possible to pass additional conversations to a
process that is already handling other conversations.

Chapter 21: Using APPC to Communicate with Other Systems 425

Chapter 21: Using APPC to Communicate
with Other Systems

This section contains the following topics:

About APPC (see page 425)
Define APPC Links (see page 430)
Define APPC Tables (see page 433)
Implement Security for APPC Links (see page 440)
Activate APPC Links (see page 444)
APPC Link Definition Examples (see page 451)

About APPC

APPC allows programs to communicate and exchange data using a common set
of communication protocols. Communication takes place between programs
using LU Type 6.2 sessions.

APPC is supported on a wide variety of both IBM and non-IBM platforms. This
allows distributed applications to be developed in a heterogeneous networking
environment. Although APPC standardizes communication between such
applications, the programs themselves can reside on differing hardware and
software platforms, and be written in different programming languages.

APPC employs a peer protocol. This means that a program's APPC behavior is
not restricted in operation due to the network node where it resides. Nor is the
node's communications ability a determining factor in application design.

APPC provides a set of common services available to an application through an
architected verb set. The verb set has a direct relationship with underlying
LU6.2 session protocols, but the application itself is written in a manner totally
independent of SNA sessions. Only those internal services that support the verb
set in a particular product implementation are concerned with managing
session activity.

About APPC

426 Network Control Language Programming Guide

Transaction Programs and Conversations

When two programs communicate using APPC, they do so via a communication
path called a conversation. All activity that occurs as a result of APPC
communication is called a transaction and the programs involved are known as
transaction programs. Terms such as client/server processing or distributed
transaction processing, are often used to describe this form of data processing.

One feature of APPC is that two programs do not have to be running to start
communications. APPC allows a program in any LU to request the invocation of
a program in any other LU to fulfill its processing requirement. The program
achieves this through a process known as allocation, which establishes a
conversation, and sends an attach request that the nominated program be
invoked to service the remote LU of the conversation.

The invoked program is said to be attached in the remote LU. An attached
program can itself attach other programs. These all form part of the same
transaction, but each communication instance between programs is considered
a separate conversation.

Within the product region, any NCL procedure can issue an allocation request to
start a conversation with another procedure or program. These can be in the
same or another network LU. When the region receives an incoming request to
attach a program, an NCL procedure is started to service the conversation.

Conversations and Sessions

Each conversation is mapped to an LU6.2 session. While a conversation is active
it has exclusive use of that session. An active conversation must terminate
before any other can begin on that same session. This means that any one
session is seen by LU6.2 conversations as a serially-shared resource.

Concurrent Conversations

To conduct concurrent conversations between any two programs, the use of
parallel sessions must be supported between them. The number of concurrent
conversations that can be established between programs is dependent upon the
number of parallel sessions available.

Note: Applications running under a PU Type 2.0 node, such as PC-based
applications, must always play the role of Secondary LU and are restricted to a
single LU6.2 conversation at any given time. Use of Node Type 2.1 and
independent LUs allows such devices to play the role of a Primary LU (BIND
sender) and also allows a parallel session capability.

About APPC

Chapter 21: Using APPC to Communicate with Other Systems 427

Share a Single Session

To share a single session for all transactions, conversations should be relatively
short-lived. The conversation turnover and available session limit should be
considered in program design and session configuration.

Conversation Handling

Within the product region, NCL procedures acting as transaction programs are
concerned only with the management of their conversations. All aspects of
conversation to session mapping and session management are handled by the
LU Services components of your product region and VTAM.

Session Polarity

Each LU6.2 session has a designated polarity indicating which LU is the
contention winner. This polarity can be negotiated during the session BIND
phase but is then fixed for the session.

The LU designated as contention winner controls conversation allocation
activity for the connection. It has the right to initiate conversations at any time
without notifying the LU at the other end. Conversely, the LU designated as
contention loser must request permission from the contention winner LU
before it can start a conversation on that session.

For a parallel session connection the typical configuration is to support enough
contention winner sessions in each direction to service concurrent demand for
conversation initiation from each LU of the connection.

Conversation Types

There are two types of conversation supported by APPC:

■ Basic conversations-for use by SNA Services programs only

■ Mapped conversations-support user transaction programs

About APPC

428 Network Control Language Programming Guide

Both basic and mapped conversations use the LU 6.2 session in the same way.
The only difference is the manner in which they are operated at the LU6.2
protocol boundary. At this boundary there is one verb set for mapped
conversations, and another for basic conversation. There are also some
type-independent verbs.

Your product supports the allocation of conversations as mapped or basic.
Because of the high level nature of the NCL verb interface, all conversation
operation is equivalent to the LU6.2 mapped conversation verb set.

APPC Option Sets

APPC consists of basic facilities that all implementations must support. In
addition to these facilities there are other more advanced facilities that are
named option sets. An option set is comprised of a number of optional facilities.
Optional facilities are grouped into sets so that the implementation choices are
restricted to these sets, and not each individual option.

A full list of all LU6.2 Option Sets is contained in the SNA Transaction
Programmer's Reference Manual for LU Type 6.2. The following section
describes the option sets that are supported by your product.

APPC Option Set Support

The following option sets are supported:

Conversations between programs located at the same LU

Allows a program to allocate a conversation where the remote program is in
the same LU as the local program.

Delayed allocation of a session

Allows a program to allocate a conversation and begin sending data before
a session can be assigned to support the conversation.

Immediate allocation of a session

Allows a program to allocate a contention-winner session only if one is
immediately available, otherwise the allocation fails.

Session-level LU-LU verification

Provides LU security by designating a password to verify the identity of a
remote LU.

About APPC

Chapter 21: Using APPC to Communicate with Other Systems 429

User ID verification

Allows a program to allocate a conversation with user verification by means
of a supplied password or an already-verified indicator where appropriate.

PIP data

Allows a program to allocate a conversation and supply program
initialization parameters to the attached remote program.

Logging of data in a system log

Allows a program to record error information in a system log.

Flush the LU's send buffer

Allows a program to explicitly cause data transmission on a session.

Prepare to receive

Allows a program to change from send to receive state with a number of
different options.

Receipt with wait

Allows a program to operate a number of conversations and be notified
when information is available on any one of them.

Receive immediate

Allows a program to request any data on a conversation but continue
processing if none is available.

Test for request-to-send received

Allows a program to test whether a request to send indication has been
received on a conversation.

Data mapping

Allows a program to request the mapping of data by the local and remote
LUs.

Get attributes

Allows a program to obtain information about a mapped conversation.

Define APPC Links

430 Network Control Language Programming Guide

Supported APPC Products

This implementation of APPC lets you communicate with the following products
or components:

■ Other domains

■ CICS/OS/VS V1.7

■ OS/2 Comms/Manager

■ CommLink SNA/LU6.2

■ APPC/MVS

It is possible that other APPC products that have not been tested will also
operate with your product.

Define APPC Links

APPC links can be defined in two ways:

■ Statically-using the LINK command

■ Dynamically-using APPC table definitions

The type of APPC link you define is dependent on your needs. A static APPC link
is used for one-off APPC connections. A dynamic APPC link is necessary if you
want APPC links to be established on demand.

For more information about static APPC links, see the Reference Guide.

Define Dynamic APPC Links

To define dynamic APPC links identify the components that can take part in
APPC communication and their operational requirements to the local domain.
These definitions are kept in APPC tables maintained by a set of product
commands. The table definitions perform the following functions:

■ Relieve NCL from the task of fully specifying all the parameters required to
initiate a conversation. This simplifies allocation requests.

■ Provide validation for both locally and remotely initiated conversation
requests. This provides a level of integrity before allowing communication
to take place.

Define APPC Links

Chapter 21: Using APPC to Communicate with Other Systems 431

■ Include information concerning destination attributes relevant to LU6.2
usage and for controlling resources such as sessions. This information allows
your product to modify its behavior to suit a variety of LU6.2
implementations.

■ Most importantly, these tables allow on-line maintenance of LU6.2
operational facilities, including aspects of control over NCL transactions
without resorting to the modification of NCL procedures.

The APPC tables support the separation of the APPC programming facilities from
the session support facilities. This allows NCL procedures to be developed and
maintained in isolation from the changing network requirements.

There are four control tables that can be defined:

Transaction Control Table (TCT)

Associates transaction program identifiers with transaction program names

Dynamic Link Table (DLT)

Defines those LUs with which the local domain allows LU 6.2 sessions to be
established.

Option Set Control Table (OSCT)

Defines those options, supported by a particular LU, that are connected to
your product through LU 6.2 session communication

Mode Control Table (MCT)

Defines mode names, the session characteristics they represent, and the
number of sessions they support

APPC Table Requirements

Although there are four APPC tables and each supports many parameters, it is
not necessary to define all of the tables or parameters. In most cases the system
provides default values. The following gives an indication of table definition
requirements:

■ Transactions for which both ends of the conversation run in the same
domain, need only a TCT definition to define for each transaction the name
of the NCL procedure that will service the request.

Define APPC Links

432 Network Control Language Programming Guide

■ LU6.2 connections that use the default option set, only need TCT and DLT
definitions. This is sufficient to authorize single session connections to
service conversations requiring no security and no data mapping support,
and is appropriate for typical communication between your product region
and work stations running APPC.

■ LU6.2 connections that use advanced options (for example, specific
logmode) need all four table definitions. Such advanced options are likely
to be required to enable sophisticated use of APPC between one domain
and other domains or CICS systems.

How APPC Control Tables Interact

An APPC link can be started from either the remote or the local domain as a
result of a conversation allocation request (for example, an &APPC ALLOCATE)
or an operator command (for example, LINK START). In either case the relevant
DLT entry is located using the link name or LU name depending on which one
was provided.

A DLT definition is needed for each remote LU that is to be connected to your
product region using LU6.2 sessions.

Link activation processing will then locate the OSCT entry nominated in the DLT
definition and its associated MCT entries. The information from these tables is
used to activate a link with the desired properties (for example, parallel
sessions). If no OSCT or MCT entries are associated with a DLT definition default
options and modes are used.

Define APPC Tables

Chapter 21: Using APPC to Communicate with Other Systems 433

Example: APPC Table Interactions

When an NCL procedure issues an allocation request the transaction ID is used
to locate the TCT entry. If no destination information was provided in the
&APPC ALLOCATE verb the link name or LU name in the TCT are used (if defined)
to determine if the link is active. If the link is not active, the LU name or link
name is used to locate the relevant DLT entry and link activation then proceeds
as described in the following figure.

This figure show APPC table interactions during the activation of links.

Define APPC Tables

The following sections describe how to define each of the APPC control tables.

Define APPC Tables

434 Network Control Language Programming Guide

Define a Transaction Control Table

The Transaction Control Table (TCT) is used to define all transactions to your
product. Each TCT entry can be used to control allocation requests, attach
requests, or both. A conversation cannot proceed without referencing a valid
TCT entry.

All transaction identifiers and transaction program names (TPN) must be
defined in a TCT to relate each transaction identifier to the appropriate TPN.
Therefore, when a program issues an allocation request it uses a transaction
identifier to indicate which transaction program it wants to communicate with.
The system relates this identifier to the TPN.

The TPN is carried in the attach request sent to the remote domain. At the
remote domain attach processing will use the TPN to start the correct program
to service the request. The TPN is therefore known to both LUs that are to
participate in a conversation. Transaction identifiers are only known locally to
each LU.

Define Transactions

The DEFTRANS command is used to define a TCT. This command lets you define
transactions between your domain and another LU.

Example: Define Transactions

To define a transaction with a transaction ID of DBQUERY and a TPN of DB01,
enter the following command:

DEFTRANS TRANSID=DBQUERY TPN=DB01

When an NCL procedure wants to invoke a transaction with a transaction ID of
DBQUERY, the TCT entry is located and the associated TPN is extracted. The TPN
and any other information specified in the TCT entry is sent in an attach request
to the remote system specified by the NCL procedure on the &APPC ALLOCATE
verb.

If you want the transaction to start the NCL procedure DBQRY01 in the remote
system, define the name of the procedure by using the PROC operand of the
DEFTRANS command. This TCT entry must reside in the remote system.

Define APPC Tables

Chapter 21: Using APPC to Communicate with Other Systems 435

Define a Qualified Transaction

You can use the same transaction ID to invoke a different TPN name during
certain circumstances, such as, testing a new version of an NCL procedure.

Do this by defining a qualified transaction entry in the TCT and specify the same
qualifier in the DLT entry that defines the remote LU to the local domain. The
qualifier is specified by the QUAL operand of the DEFTRANS and DEFLINK
commands.

More information:

Run a Qualified Transaction (see page 455)

Generic Transactions

A transaction identifier can have the same common suffix as the name of the
transaction procedure it subsequently invokes-for example, the transaction
identifier DBUPDT and the procedure APPCUPDT have the suffix UPDT in
common. If there are many transactions starting with a fixed prefix such as DB
that invoke procedures with a fixed prefix such as APPC but with the same
variable suffix, a single generic transaction definition can be used to service
them.

Generic transactions are defined by specifying masks for the transaction IDs,
TPNs, and procedures in the TCT entry.

More information:

Run a Generic Transaction (see page 456)

Define APPC Tables

436 Network Control Language Programming Guide

Specify a Default Destination

The destination of an APPC transaction request can be specified by using the
&APPC ALLOCATE verb or in the TCT definition. If no destination is specified on
the &APPC ALLOCATE verb, the destination in the TCT is used. If no destination
is specified on the &APPC ALLOCATE verb or in the TCT, a default destination of
ENV=CURRENT is assumed.

If a transaction request is always serviced by the same destination, you can
specify a default destination in the TCT definition. To specify a default
destination in a TCT definition, specify one of the following on the DEFTRANS
command:

■ A link name using the LINK operand

■ An LU name using the LUNAME operand

■ A product domain ID, using the DOMAIN operand

■ The NCL environment using the ENV operand (for local conversations)

Example: Specify a Default Destination

To define an APPC link with a transaction ID of DBQUERY, a TPN of DB01, and a
link name of NMB, enter the following command:

DEFTRANS TRANSID=DBQUERY TPN=DB01 LINK=NMB

For more information about the options that can be specified in a TCT, see the
description of the DEFTRANS command in the Online Help.

Maintain TCT Definitions

You can replace or delete a TCT definition by using product commands. The
REPTRANS command lets you replace an existing TCT definition with new values.
The DELTRANS command lets you delete a TCT table definition. For more
information, see the Online Help.

Define APPC Tables

Chapter 21: Using APPC to Communicate with Other Systems 437

Define a Dynamic Link Table

A Dynamic Link Table (DLT) is used to support the dynamic addition of different
types of links, including INMC and APPC links. In the case of APPC the DLT is
used to define those LUs with which the local system will allow automatic link
activation. Two types of APPC links can be defined, those that support parallel
LU6.2 sessions and those that support only a single LU6.2 session.

To specify a DLT, use the DEFLINK command.

Example: Define a Dynamic Link Table

To allow an APPC link with an LU of NM1, enter the following command:

DEFLINK TYPE=APPC LUNAME=NM1 LINK=NM1

The DLT supports other options including the specification of a password for link
level security.

More information:

Implement Security for APPC Links (see page 440)

Specify an Option Set

To include support for option sets, specify an OSCT definition with the OPSET
operand. When an APPC link is activated, the OSCT is then accessed to
determine the optional features it is to support.

If an option set is not nominated or the one nominated can not be found during
link activation, the system uses a default option set. The default defines a
parallel session link with no data mapping support and no conversation level
security support for the connected system.

Maintain DLT Definitions

DLTs are maintained by using the REPLINK and DELLINK commands. REPLINK lets
you replace a DLT definition. DELLINK lets you delete a DLT definition. For more
information, see the Online Help.

Define APPC Tables

438 Network Control Language Programming Guide

Define an Option Set Control Table

An Option Set Control Table (OSCT) is used to define the optional features that
the APPC link supports during communication. The option sets provide these
optional features.

To define an OSCT, use the DEFOPSET command. You can specify single or
parallel session links by using the PARSESS operand. However, if not specified,
the default is parallel sessions.

During the activation of a link, the OSCT entry nominated in the DLT definition
for the destination is used to determine the supported options and to indicate
the associated mode names.

Example: Define an Option Set Control Table

To define an OPSET of NMOPSET with single session links issue the following
command:

DEFOPSET OPSET=NMOPSET PARSESS=NO

Note: For more information, see the description of the DEFOPSET command in
the online help.

Nominate Mode Names

An OSCT entry can be associated with up to four mode names. You can use the
MODE operand to specify the names of the MCT entries that define the LU6.2
mode names associated with this OSCT entry. Multiple mode names are useful
for parallel session links to group sessions with similar characteristics. If no
mode names are specified in the OSCT definition, a default mode is used during
link activation.

Maintain OSCT Definitions

OSCTs are maintained with the REPOPSET and DELOPSET commands. Use the
REPOPSET command to replace an OSCT definition and the DELOPSET command
to delete an OSCT definition.

Note: For more information, see the online help.

Define APPC Tables

Chapter 21: Using APPC to Communicate with Other Systems 439

Define a Mode Control Table

To request a session with certain characteristics specify a mode name on the
allocation request or a Mode Control Table (MCT) definition in the OSCT. The
MCT definition specified contains an LU6.2 mode name which has associated
session characteristics.

To define an MCT entry, use the DEFMODE command.

Example 1: Define a Mode Control Table

To define an MCT entry with the name LU62PARL which references the
LU62PARL mode name, enter the following command:

DEFMODE MODE=LU62PARL MODENAME=LU62PARL

Example 2: Define a Mode Control Table

To define an MCT entry without the MODENAME operand enter the following
command.

DEFMODE MODE=LU62PARL

The name of the MCT entry is used as the LU6.2 mode name.

VTAM Logmodes

To associate an LU6.2 mode name with specific session characteristics (for
example, Class of Service, session level pacing), some implementations of APPC
require the matching VTAM logmode names with the derived characteristics to
be defined to the MCT via the LOGMODE parameter. If omitted, the VTAM
default logmode values for those parameters are used.

Note: Your product can successfully initiate sessions using LU6.2 mode names
with or without matching VTAM logmode names. However, other
implementations, such as CICS and OS/2, require the LU6.2 mode name to
match the VTAM logmode name to successfully activate sessions initiated by
these products.

Specify Modes for Single Session Links

If you are using single session links, the primary use of the MCT entry is to
derive a VTAM logmode name if session establishment is initiated by your
product.

Implement Security for APPC Links

440 Network Control Language Programming Guide

Specify Modes for Parallel Session Links

If you are using parallel session links, mode names can be used to partition the
available sessions into logical groups, with slightly different characteristics.

Example: Specify Modes for Parallel Session Links

To define a parallel session mode that supports a maximum of ten sessions, a
minimum of two contention winner sessions for the local domain, and a
minimum of two contention winner sessions for the remote system enter the
following command.

DEFMODE MODE=LU62PARL SESSLIM=10 MINWIN=2 MINLOSE=2

Default Modes

If you do not nominate an option set in the DLT definition, both the default
OSCT and the default MCT are used at link activation. The default MCT is the
first entry in the MCT or if no entries are defined an internal default applies with
MODENAME=APPCMODE, SESSLIM=20, MINWIN=5 and MINLOSE=5, no
logmode name is defined. The same applies if you nominate an MCT entry in
your OSCT but the nominated modes can not be found.

Maintain MCT Definitions

MCT entries are maintained with the REPMODE and DELMODE commands. The
REPMODE command lets you replace an MCT entry. The DELMODE command
lets you delete and MCT entry.

Note: For more information about these commands, see the online help.

Implement Security for APPC Links

There are two levels of security that can be provided for APPC links:

■ Link level security, or LU-LU verification

■ Conversation level security

The following sections describe these two security levels.

Implement Security for APPC Links

Chapter 21: Using APPC to Communicate with Other Systems 441

Link Level Security

Link level security is a session level security protocol exchanged during session
activation to confirm the identity of the partner LU. This requires the use of an
eight character password known to both LUs that comprise the link. The
password is not transferred on the session but used to encrypt data. The
encrypted data is analyzed by the other LU to determine whether the password
is correct or not.

The password is any hexadecimal string, and may be defined in the DLT, or
supplied by an operator on a LINK START request. When a password is present,
your product invokes LU-LU session verification processing. If verification fails
for any reason then link and session activation fails.

Example: Link Level Security

To specify a password of A1B2C3D4 in a DLT definition for SYSB, enter the
following command:

DEFLINK LINK=B LU=SYSB TYPE=APPC PASSWORD=A1B2C3D4

If PASSWORD is not specified when defining the DLT and a password is not given
in the LINK START command, LU-LU verification is not performed.

Conversation Level Security

Conversation level security is used to verify the identity of the partner
transaction program. The relevant security information (for example, user ID
and password) is sent in the attach request and is verified by the receiving LU. If
the correct security information is not supplied the request is rejected.

A TCT is used to define the level of conversation security required by a given
transaction. When an NCL procedure issues an allocation request the TCT entry
is used to determine the level of security information that needs to be included
in the attach request to be sent to the remote LU.

Implement Security for APPC Links

442 Network Control Language Programming Guide

Run a Secured Transaction

To run a secure transaction define the SECURITY operand of the DEFTRANS
command in a TCT entry. Options on the operand are: NONE, SAME, USER, and
USERPSWD. The default is NONE which means that the transaction runs without
security.

Example: Run a Secured Transaction

To secure the transaction for DBQRY01 with the user's password, enter the
following command:

DEFTRANS TRANSID=DBQRY01 TPN=DB01 SECURITY=USERPSWD

When an allocation for the DBQRY01 transaction is issued, the password for the
user environment is passed to the destination for verification.

Security Options

If you specify SECURITY=SAME in the TCT, the allocation assumes the security of
the request source. If you specified the user ID and password on the allocation
request, it assumes the same as if you had specified SECURITY=USER. If you do
not specify any user information, it assumes the same as if you had specified
SECURITY=NONE.

For allocation requests, security is performed for a transaction under the
following conditions:

■ The NCL procedure which issued the request is running in a signed-on
environment

■ The USERID and PASSWORD operands were specified in the allocation
request

Otherwise it will run as an unsecured transaction.

Incoming attach requests that contain security information result in a secured
transaction and if no security information is present the transaction runs as
unsecured.

Implement Security for APPC Links

Chapter 21: Using APPC to Communicate with Other Systems 443

Conversation Level Security and NCL Procedure Environments

NCL procedures running in a signed-on user environment can issue allocation
requests for secured transactions without specifying their user ID and password.
If an NCL procedure is running in an environment that is not protected by a user
ID and password signon, such as EASINET, it can only request allocation of
secured transactions by specifying the USERID and PASSWORD operands in the
allocation request.

For incoming attach requests the TCT security level determines the type of NCL
environment in which the NCL procedure nominated to service the transaction
is run. An attach request for an unsecured transaction results in the NCL
procedure being started in the background server (BSVR) region.

If the request is for a secured transaction, a special APPC region is created (if
none already exists) for the user. The user is signed on using normal security
procedures. This happens before the transaction can be started.

Secured transactions require a signed-on environment before execution is
permitted. An attempt to start such a transaction in some other environment
fails with a security error return code.

Specify Security for APPC Links with Remote Systems

The OSCT is used to indicate the security options that can be accepted from a
remote LU. To specify security parameters, use the SECURITY operand of the
DEFOPSET command. The options for the operand are: NONE, USER, and
USERPSWD.

If you specify NONE, no security information sent by the remote LU in an attach
request is processed by the local system; if present it is ignored. This implies
that only unsecured transactions can be invoked by the remote LU.

If you specify USERPSWD, user IDs and passwords are accepted from the remote
LU and passed to the local security system for verification. However, the already
verified indicator is not accepted.

If you specify USER, then USERPSWD is assumed and in addition the already
verified indicator is also supported. If the already verified indicator is set, a
request for user ID authorization is still made to the local system to validate the
region without a password.

Activate APPC Links

444 Network Control Language Programming Guide

APPC Region Use

NCL procedures, defined in the TCT to service secured transactions, execute in a
special APPC region built-in response to an attach request for a specific user ID.
Normally all attached requests for the same user ID execute in the same APPC
region. When the last NCL procedure completes execution the region is deleted.

To restrict the building of an APPC user region to a given user ID, specify a DLT
entry using the USERENV operand of the DEFLINK command. The options for the
operand are GLOBAL or LINK.

If GLOBAL (the default) is specified, an APPC region is built to service all attach
requests from the same user ID from any remote LU.

If LINK is specified, an APPC region is built to service attach requests, for a given
user ID, received from the remote LU defined by the DEFLINK definition.

Activate APPC Links

You can activate a link in the following ways:

■ Manually-via a LINK START command

■ Automatically-as the result of an allocation request

Start Links Manually

To start an APPC link manually use the LINK START command.

Example: Start Links Manually

To start an APPC link from SYSA, issue the following command:

LINK START=NMB TYPE=APPC

Activate APPC Links

Chapter 21: Using APPC to Communicate with Other Systems 445

Deactivate Links Manually

Regardless of the way an APPC link is started it remains active while any
sessions are active even when all conversation activity ceases. If all sessions on
the link have closed then the link will automatically deactivate.

To stop the link at any other time, use the LINK STOP command. You can specify
different options (DRAIN, QUIESCE, and FORCE) to influence the way the link
deactivates.

If DRAIN is used (the default), all conversation activity is serviced before closing
the link. If QUIESCE is used, active conversations are allowed to complete
normally, but pending conversations complete with an allocation error. If FORCE
is used, all conversations are terminated (with a resource failure return code)
and link deactivation proceeds immediately.

Example: Deactivate Links Manually

To deactivate the link to NMB by using the LINK STOP command with the DRAIN
option, enter the following command:

LINK STOP=NMB TYPE=APPC

Start Links Automatically

A request to establish an APPC link may come from:

■ The remote LU

■ The local domain via a conversation request

■ An operator request

Provided the correct definitions are in place any program issuing an allocation
request can cause link activation if the link is not already active.

The LU name of a network node must be defined in the DLT (see page 437) to
authorize automatic LU6.2 session activation between the remote LU and the
local domain.

Activate APPC Links

446 Network Control Language Programming Guide

Session Initiation Requests

For a link to be activated automatically, a request to initiate an LU6.2 session
must come from a source in the network. All requests can be categorized as
coming from one of three sources:

■ An external logon request

■ An external BIND request

■ An internal NCL procedure request

Whenever the first session between your product region and some other
network node is requested, the Dynamic Link Table is examined to determine
whether the link is authorized, and establish any special options for the link.

External Logon Request

An external logon request arises when these three conditions occur:

■ An LU in the network requests a session between the product region and
either itself, or some other LU

■ The product region is to be the primary session partner

■ The logmode specified contains LU6.2 session parameters

Successful processing of such a request results in a BIND being issued to the
target LU. The target LU can accept the BIND as it is, negotiate certain BIND
parameters, or reject the BIND outright. If not rejected, the negotiated (or
unchanged) BIND response is returned to your product region and, if
acceptable, the session establishment is complete.

External BIND Request

An external BIND request arises when these three conditions occur:

■ An LU in the network requests a session between the product region and
itself

■ The product region is to be the secondary session partner

■ The BIND contains LU6.2 session parameters

Successful processing of such a request results in your product accepting (or
negotiating) the BIND from the LU, and the session is established.

Activate APPC Links

Chapter 21: Using APPC to Communicate with Other Systems 447

Internal NCL Procedure Request

The internal NCL request, &APPC ALLOCATE, can be sourced from any executing
NCL procedure to request an APPC conversation with some remote LU. If no
suitable sessions are available to that LU, and the session limit (as defined in the
MCT) has not yet been reached, then the product region issues a session setup
request to VTAM using the logmode name from the MCT, whereupon session
initiation proceeds as for an external logon request.

Note: Wherever your product initiates a session, it is the primary session
partner, and no logmode is required because the LU6.2 BIND is formatted
according to the options for the link.

Sessions where your product region is the secondary session partner must be
initiated by the other (primary) session partner. This does not restrict any
session usage as it is a peer relationship, and aspects regarding session polarity
(such as which LU is contention winner) are negotiable.

How Session Establishment Works

Regardless of the source of the session initiation request, and whether your
product region is to be the primary or secondary session partner, session
establishment proceeds through a number of phases:

■ Phase 1. Session parameter validation ensures that the BIND to be sent
(when processing a logon request), or BIND received (when processing an
unsolicited BIND), is a valid LU6.2 BIND within the parameters supported by
the product region.

If necessary, the BIND parameters are modified before being sent to the
secondary LU, or negotiated with the primary LU, so that they are within the
bounds supported by the product region.

■ Phase 2. The unqualified network LU name provided by VTAM is extracted.
If other LU6.2 sessions already exist with this network node, or are in the
process of being established, then Step 3 is performed; otherwise Step 4 is
performed next.

■ Phase 3. Where other LU6.2 sessions exist, or are activating, to the
destination involved, additional checks are made to determine whether the
new session is acceptable within the session limits determined by the MCT
entries (see Step 5). If so, the session is accepted as a parallel session
without further processing; otherwise it is rejected.

Activate APPC Links

448 Network Control Language Programming Guide

■ Phase 4. Where no other LU6.2 sessions exist, and none are being activated,
to the destination involved, the unqualified network LU name is used to
locate a matching entry in the DLT. If an entry cannot be located the session
initiation is rejected. Otherwise the DLT details are extracted and used to
initialize the APPC link connection. If an OSCT entry was nominated in the
DLT, it is located and the processing options are extracted.

■ Phase 5. The OSCT entry determines whether this link supports parallel
sessions or not. Any mode names listed for the OSCT entry are used to
locate the corresponding MCT entries, and the details of each MCT is
extracted to form a valid MODE name list for this destination. For each
mode name, this list contains the session limits for that mode, as well as
other session control information.

Note: If a session initiation request comes from an &APPC ALLOCATE verb,
Phase 4 and 5 are performed first, before the session setup request is passed to
VTAM. Following this, and for all other session initiation types, processing
begins at Phase 1 when VTAM notifies the region of the arrival of a logon
request or BIND request.

Single Session Links

When the OSCT entry indicates that parallel sessions are not supported, an
external BIND request to establish a parallel session link is rejected. Only a
single session link can be established if the OSCT entry has been defined with
PARSESS=NO. Hence only one conversation at a time can be active on such a
link, and other conversation requests must queue, pending session availability.

If the session setup request comes from the local domain (via a LINK command
or NCL procedure allocate request), the product region attempts to set up a
contention winner session. However, the polarity of the session can be
negotiated by the secondary LU. If the session setup request comes from
outside the local domain, the region accepts the session polarity without
negotiation.

Activate APPC Links

Chapter 21: Using APPC to Communicate with Other Systems 449

Parallel Session Links

When the OSCT entry indicates that parallel sessions are supported, an external
BIND request to establish a single session link is accepted, and a single session
link is set up. An external BIND request to establish a parallel session link is
accepted and session limits negotiation is initialized.

For a parallel session link, the product region initializes the link session limit as
the sum of the session limits for each mode defined for the link. An attempt is
made to initially activate sessions within each mode to at least reach the
minimum contention winner counts for the mode. Additional sessions may be
activated if conversation demand cannot be immediately serviced by the
available sessions.

During link initialization a special transaction known as Change Number of
Sessions (CNOS) is executed for parallel links. This transaction negotiates the
session limits for the defined modes before sessions are established. The CNOS
transaction may be subsequently invoked on demand, such as by remote LU
request, to renegotiate session limits at any stage of link operation.

Activate APPC Links

450 Network Control Language Programming Guide

Session Selection for Conversations

When an allocation request targets a particular link an attempt is made to
locate a session to be used by the conversation. If an idle contention winner
session is located then it is assigned. If not, the conversation goes into a pending
allocation state, awaiting a session for the conversation.

For a pending allocation on a parallel session link, further efforts are made to
isolate a usable session. Where the number of contention winners can be
increased (according to the session limits) then a new session is started.
Otherwise, if an idle contention loser session is located, a bid is made to use
that session.

For a pending allocation on a single session link, if the session is a contention
loser session and it is idle, a bid is made to use that session.

In general, when a conversation enters a pending allocation state, one of three
events can occur to provide a session for its use:

■ An active conversation ends, freeing up a contention winner session for the
pending conversation.

■ A new contention winner session starts and becomes available for the
pending conversation.

■ A response to previous bid indicates that the remote end will allow the
conversation to commence on a contention loser session.

Conversations remain pending until one of these events frees a session for use,
or until the allocation request is otherwise canceled. An allocation may time out
(if a time-out period is specified on the allocation), or a link termination
condition may cause the cancellation of all pending requests for the link.

Deactivate Links Automatically

APPC links deactivate automatically when all sessions on the link have been
closed.

APPC Link Definition Examples

Chapter 21: Using APPC to Communicate with Other Systems 451

APPC Link Definition Examples

The following examples illustrate typical APPC table definition requirements to
establish LU6.2 connections between the following:

■ Two domains (SYSA and SYSB)

■ Two domains (SYSA and SYSB) that require security verification

■ The product region and a remote LU

■ Two domains (SYSA and SYSB) using a qualified transaction

■ Two domains (SYSA and SYSB) using a generic transaction

Each example uses a database query application with transaction identifier
DBQUERY, a TPN of DB01, and a server NCL procedure DBQRY01.

When defining mode names in the examples, the MODENAME parameter has
been omitted in the DEFMODE command, so that the LU6.2 mode name defined
is the same as the name of the MCT entry (MODE parameter).

Run Conversations Within the Same Domain

The two LUs of an APPC conversation are run in the same domain to develop a
database query application and test it. No sessions are established, no session
related definitions are needed, and session overheads are eliminated. Only the
TCT entry needs to be defined, with the name of the local domain as the
destination LU.

To define an APPC link within the same domain, SYSA

1. Define the following TCT entry in SYSA:

DEFTRANS TRANSID=DBQUERY TPN=DB01 LU=SYSA PROC=DBQRY01

2. Issue an allocation request from an NCL procedure in SYSA for DBQUERY.

The allocation processing locates the TCT entry and determines that the
destination is the local domain. This has the effect of starting DBQRY01 in SYSA.
During this processing there is no need to reference any of the session related
tables DLT, OSCT or MCT.

APPC Link Definition Examples

452 Network Control Language Programming Guide

Run with Already Verified Security

An APPC link is to be established between two domains SYSA and SYSB. The link
is to service transactions that may require data mapping support.

To define a link between SYSA and SYSB with data mapping support

1. Define the following DLT entries in SYSA and SYSB that specifies an OSCT
entry that supports data mapping:

DEFLINK LINK=L01 LU=SYSB TYPE=APPC OPSET=NMMAP (in SYSA)

DEFLINK LINK=L02 LU=SYSA TYPE=APPC OPSET=NMMAP (in SYSB)

2. Define the following OSCT entry, NMMAP, in both domains:

DEFOPSET OPSET=NMMAP MODE=MODELU62 SEC=USER MAP=YES +

LOG=YES PARSESS=YES

SEC=USER indicates that the already verified indicator is to be accepted
from the remote domain

Note: If you want the link to be a single session link, specify the
PARSESS=NO operand and a MODE that supports single session links in the
OSCT entry.

3. Define the following MCT entry, MODELU62 in both domains:

DEFMODE MODE=MODELU62 SESSLIM=4 MINWIN=1 MINLOSE=0

The LU6.2 mode name defined is MODELU62 which supports a maximum of
4 sessions.

APPC Link Definition Examples

Chapter 21: Using APPC to Communicate with Other Systems 453

4. Define the following TCT definitions in each domain to allow the invocation
of the DBQURY01 NCL procedure:

DEFTRANS TRANSID=DBQUERY TPN=DB01 LINK=L01

MODENAME=MODELU62 (in SYSA)

DEFTRANS TRANSID=DBQUERY TPN=DB01 PROC=DBQRY01 (in SYSB)

A default mode name for conversation allocation has been specified.

5. An NCL procedure in SYSA issues an allocation request for DBQUERY.

The TCT entry is located and an attach request for DB01 built. The link name
L01 in the TCT is used to locate the DLT and to determine the LU name of
the destination, SYSB. The OSCT entry NMMAP nominated in the DLT and
the corresponding MCT entry MODELU62 nominated in the OSCT are also
located. If the link is not already active the DLT entry is used to start link
activation and a parallel session link with data mapping support is
established.

Once the link is active and a session is available the attach request for DB01
is sent to SYSB. Attach processing finds the TCT entry for DB01 and the NCL
procedure, DBQRY01 is started.

Run an APPC Link Between a Domain and a Remote LU

An APPC link is to be established between a domain and an OS/2 work station.
The link is to service transactions with no data mapping requirements.

OS/2 requires that the mode name match a valid LU6.2 VTAM logmode,
therefore in addition to a DLT, you need to define an OSCT and its associated
MCT.

To run an APPC link between your domain and an OS/2 workstation

1. Define the following DLT in your domain:

DEFLINK LINK=WRKS01 LU=OS2001 TYPE=APPC OPSET=WRKSOPST

WRKSOPST is the name of the OSCT entry to be used.

Note: Ensure that you enable APPC links in your OS/2 system.

APPC Link Definition Examples

454 Network Control Language Programming Guide

2. Define the following OSCT entry in your domain:

DEFOPSET OPSET=WRKSOPST MODE=LU62SESS LOG=YES MAP=NO

LU62SESS is the name of the MCT entry to be used.

Note: If you want the link to be a single session link, specify the
PARSESS=NO operand and a MODE that supports single session links in the
OSCT entry.

3. Define the following MCT entry in your domain:

DEFMODE MODE=LU62SESS LOGMODE=LU62SESS SESSLIM=20 +

MINWIN=1 MINLOSE=0

The LU6.2 mode name defined is LU62SESS and supports a maximum of 20
sessions. A logmode has been specified and is the same as the LU6.2 mode
name LU62SESS. OS/2 requires mode names to match a valid VTAM
logmode entry.

4. Define the following TCT entries so that the DBQUERY transaction can be
invoked from the workstation and the database interrogated in SYSA:

DEFTRANS TRANSID=DBQUERY TPN=DB01 PROC=DBQRY01

5. A program running in the workstation issues an allocation request for TPN
DB01.

Your domain receives an LU6.2 session request from LU OS2001. The LU name is
used to locate the DLT for LU OS2001. The associated OSCT and MCT are also
located. A parallel session link with no data mapping support is established. The
workstation sends an attach request for DB01 to your domain. The TCT for DB01
is located by your domain and the procedure DBQRY01 is started to service the
transaction.

APPC Link Definition Examples

Chapter 21: Using APPC to Communicate with Other Systems 455

Run a Qualified Transaction

A database query application runs between two domains SYSA and SYSB. The
DBQUERY transaction is invoked from SYSA to send an attach request for DB01
to SYSB, where the NCL procedure DBQRY01 is run. A new version of this
procedure (DBQRY01T) needs to be tested using TPN DB01TEST and the
transaction qualifier TEST.

To use the APPC link to test the new NCL procedure

1. Define the qualifier TEST in the DLT entry in SYSA by issuing the following
command:

DEFLINK LINK=B LU=SYSB TYPE=APPC QUAL=TEST

Ensure that you stop and restart the link to put this qualifier into effect.

2. Define the qualified entry in the TCT entry in SYSA by issuing the following
command:

DEFTRANS TRANSID=DBQUERY TPN=DB01TEST QUAL=TEST

3. Define a TCT entry in the remote system (SYSB) for the procedure being
tested by issuing the following command:

DEFTRANS TRANSID=DBQUERY TPN=DB01TEST PROC=DBQRY01T

4. Issue an allocation request for DBQUERY.

The existing unqualified TCT entry is used to resolve the name of the
destination. The destination name is used to determine that the qualifier TEST is
in effect (as defined in the DLT). The TCT entry for DBQUERY qualified by TEST is
located and used to complete the allocation request. An attach request for
DB01TEST is sent to SYSB where the TCT entry for DB01TEST is found and
DBQRY01T is run.

APPC Link Definition Examples

456 Network Control Language Programming Guide

Run a Generic Transaction

Two domains SYSA and SYSB are connected via an APPC link. Transactions
starting with the prefix DB (for example, DBQUERY, DBPUT, DBUPDT) are to be
allocated in SYSA. The NCL procedures to service these transactions start with
the prefix APPC (for example, APPCQRY, APPCPUT, APPCUPDT). This can be
done using a single generic TCT entry.

To define a single TCT entry to service all of the above transactions

1. Define the following TCT entry in SYSA:

DEFTRANS TRANSID=DB* TPN=TP* LINK=B

2. Define the following TCT entry in SYSB:

DEFTRANS TRANSID=DB* TPN=TP* PROC=APPC*

3. Issue an allocation request in SYSA for transaction ID DBUPDT.

This matches the TCT entry DB*. The matching characters in the transaction
name are removed and the remaining characters (UPDT) are appended to the
generic TPN (TP*) to get TPUPDT. This is the TPN sent to the remote domain. It
matches the TCT entry for TP* and again the matching characters are removed.
The remaining characters UPDT are appended to the generic procedure name
APPC* to form the NCL procedure name APPCUPDT to be started.

Chapter 22: Program-to-Program Interface 457

Chapter 22: Program-to-Program Interface

This section contains the following topics:

Uses of PPI (see page 458)
CNMNETM Module (see page 458)
Structure and Data Flow (see page 459)
Interface Details (see page 460)
&PPI Verb (see page 461)
Access PPI Facilities (see page 465)
Access PPI Facilities from Other Programs (see page 467)
Check PPI Status (see page 473)
Control Receiver Programs (see page 474)
Send a Generic Alert (see page 482)
Control Data Buffers (see page 484)
Wait on an ECB (see page 490)
Obtain a Unique Sender or Receiver ID (see page 491)
Receive Information from a Receiver Program (see page 493)
Trace the Cause of a Processing Error (see page 495)

Uses of PPI

458 Network Control Language Programming Guide

Uses of PPI

Program-to-Program Interface (PPI) provides a general-purpose facility for
programs, written in any language, to exchange data. It also provides a facility
for any program to forward a generic alert to your product.

As PPI is available to any environment, not just NCL, PPI provides a simple,
powerful technique to access your product from outside.

For example, an NCL process could provide a batch program with the ability to
issue selected product commands and return the results of the command to it.

No special authorization is required to use PPI, and it does not depend on
having your product running. The PPI implementation can use either
Cross-Memory Services or Service Request Block (SRB) scheduling.

The NCL &PPI verb provides access to the Program-to-Program Interface in your
product. This interface allows any programs, executing on the same system,
written in almost any programming language to freely exchange information.

The API provided by the Program-to-Program Interface is described in IBM's
Tivoli NetView Application Programming Guide: Program to Program Interface.

The PPI services can be provided by the subsystem interface for your product
(SSI) or by the Tivoli NetView Subsystem Interface.

CNMNETM Module

The IBM Tivoli NetView Application Programming Guide: Program to Program
Interface discusses the CNMNETV module that you call when using the PPI API.
A similar module, CNMNETM, with an alias of CNMNETV, is provided. This
module can be loaded by application programs, or link-edited with them. It is
fully re-entrant and can be placed in the PLPA, if so desired.

At this time, the IBM version and this version of the module are incompatible
with each other's implementation of the PPI. That is, the IBM CNMNETV module
will not work in your product's PPI environment, and conversely.

A subsystem is available for your product, which runs as a separate job or
started task. This allows PPI to stay active regardless of whether your product is
active or not. A command control interface between the subsystem and your
product allows control of the subsystem from any suitably authorized product
command environment.

Structure and Data Flow

Chapter 22: Program-to-Program Interface 459

Structure and Data Flow

As this figure shows, programs issue calls to CNMNETM (CNMNETV) to send
data to the nominated receiver program. The data is buffered in the SSI address
space in queues associated with each receiver. When data is available for a
given receiver, your product posts an ECB that the receiver can wait on, and the
receiver can then call CNMNETM using a receiver function to obtain the next
data buffer.

Note: Data is not directly moved from sender to receiver. The buffering allows
the sender or receiver to run asynchronously.

Interface Details

460 Network Control Language Programming Guide

Interface Details

A brief overview of the interface follows.

■ Programs construct a request parameter block (RPB) that contains details
about a call to PPI.

■ A program then issues a CALL to CNMNETV (CNMNETM), passing the RPB as
the only parameter (standard linkage, R1 pointing to the word containing
the RPB address).

■ Upon return, the RC field in the RPB contains the return code. Depending on
the call and the return code, other data can be provided.

For more information about the correlation between the &ZFDBK and
&RETCODE system variables, see the &PPI verb description in the Network
Control Language Reference Guide.

The following functions can be provided in the RPB function code field:

Function code 1-inquire about PPI status

This function code allows an application program to determine if PPI is
available and active in the system. A return code of 10 indicates that it is
available.

Function code 2-obtain receiver status

This function code allows an application program to determine the status of
a named receiver program. Return codes indicate whether the receiver is
defined or not, and whether it is presently active or not.

Function code 3-obtain ASCB and TCB addresses

This function code allows programs written in languages that do not support
the ability to obtain ASCB or TCB addresses, the addresses of these control
blocks. They are needed for other PPI calls.

Function code 4-define and initialize receiver

This function code allows a program to define itself as a receiver. The
program provides a unique 1 to 8 character receiver name and queue limit.
Following this call, the receiver is defined, and other programs can send
data to it.

The receiver can optionally be defined as authorized. This prevents
programs that are not APF authorized from sending data to it.

&PPI Verb

Chapter 22: Program-to-Program Interface 461

Function code 9-deactivate a receiver

This function code allows a defined receiver program to deactivate itself.
The queue limit can be optionally altered. If a receiver program (Task)
terminates without issuing this call, it is automatically deactivated.

Function code 12-send a generic alert

This function code allows any program to send a generic alert to your
product. It is sent to the defined receiver NETVALET, which receives these
generic alerts in NMVT format, and forwards them on to NEWS.

Function code 14-send a data buffer

This function code allows any program to send a data buffer to any defined
receiver (active or inactive). The receiver will be notified if necessary.

Function code 22-receive a data buffer

The function code allows a receiver program to receive the next available
data buffer. If no buffers are available, a return code informs the receiver.

Function code 24-wait on an ECB

This function code allows a program written in a language that does not
support ECB waiting, to wait for data to arrive.

Function code 60-obtain a unique name

This function code, available only in this implementation of PPI, allows a
program to obtain a unique 8 character ID. Although programs that only
send data need not have a unique ID, all receivers must have a unique ID.
This service is provided to allow a sender to obtain a unique ID so that it can
register itself as a receiver for a two-way conversation.

&PPI Verb

All PPI facilities can be accessed using the &PPI verb. A keyword immediately
following the &PPI verb identifies the specific request. These keywords
generally correspond to the various functions described in the API.

The full set of &PPI requests is:

■ &PPI ALERT

■ &PPI DEACTIVATE

■ &PPI DEFINE

■ &PPI RECEIVE

&PPI Verb

462 Network Control Language Programming Guide

■ &PPI SEND

■ &PPI STATUS

Note: For more information about the &PPI verb, see the Network Control
Language Reference Guide.

Return Codes, System Variables, and User Variables

Following each execution of the &PPI verb, the &RETCODE and &ZFDBK system
variables are set to reflect the success or otherwise of the request. &RETCODE
contains a normalized return code. &ZFDBK contains the PPI return code.

Note: For more information about the correlation between the &ZFDBK and
&RETCODE system variables, see the &PPI verb description in the Network
Control Language Reference Guide. A table shows the returned values of each of
these system variables.

Other system variables are:

&ZPPI

Indicates whether this system appears to support PPI or not.

&ZPPINAME

Contains the PPI receiver ID that this NCL process is registered as.

Some &PPI functions set specific NCL user variables:

&PPISENDERID

Set to the PPI ID of the sender of a received message.

&PPIDATALEN

Set to the actual received data length, in bytes.

Determine PPI or Receiver Status

The STATUS option of the &PPI verb allows an NCL process to determine the
status of PPI itself (available or not), or the status of a PPI RECEIVER (by using
the ID=name operand).

In either case, the process can examine the &RETCODE and &ZFDBK system
variables after the request. If &RETCODE is 0, then PPI or the receiver is
available or defined.

&PPI Verb

Chapter 22: Program-to-Program Interface 463

Define the Process as a Registered PPI Receiver

By using the DEFINE option of the &PPI verb, an NCL process can register itself
as a receiver. A 1- to 8-character name can be supplied, which must be unique
(that is, not presently defined to PPI or currently inactive). If your product is
providing PPI services, an alternative is to use the ID=* option, which causes PPI
to provide a unique name. This option is useful when talking to globally named
servers, as you need not worry about trying to find a unique name.

A process need not be defined to send data using the SEND and ALERT options.
In this case, a sender ID of #nclid (7 characters, for example #001352) is used.

Send a Generic Alert

One function of the PPI facility is to collect generic alerts and forward them to
general CNM reporting (for example, NEWS). The &PPI ALERT verb allows any
NCL process to send an alert to CNM. The alert must be formatted as an NMVT,
including the NMVT header.

Send Data to a Receiver

The &PPI SEND verb option allows any NCL process to send data to a nominated
receiver. This receiver must be defined, but can be inactive (in which case data
is queued unless the queue limit is reached).

Note: The receiver cannot be an NCL process at all and can reside in another
address space.

The data to be sent can be a character string, HEX data that is packed before
sending, or an MDO.

&PPI Verb

464 Network Control Language Programming Guide

Receive Data

An NCL process can receive data directed to its defined receiver ID using the
RECEIVE option of the &PPI verb. That data can come from other NCL processes,
including other systems, or from other programs.

Standard parsing options, as on the other &xxxREAD verbs, can be used.
Alternatively, MDOs can be received.

The WAIT operand allows the procedure to indicate whether or not it will wait if
no data is available, and, if no data is available, how long it will wait.
Alternatively, the process can use WAIT=NOTIFY, to cause a message to be
delivered to the dependent response queue when data arrives, thus allowing
other work to be performed. When the notification arrives via &INTREAD, the
process can reissue the &PPI RECEIVE.

Deactivate the Receiver ID

The &PPI DEACTIVATE option allows an NCL process to disconnect itself from a
defined PPI receiver ID. Optionally, a queue limit can be specified, allowing data
to be queued even though no receiver is present. The ID can be reactivated
later, by this or any other NCL process.

If an NCL process that is defined to PPI terminates, an automatic deactivation
occurs.

Access PPI Facilities

Chapter 22: Program-to-Program Interface 465

Access PPI Facilities

To access PPI facilities, use the &PPI verb. A keyword specified after the verb
identifies each facility. The facilities take the form of requests that can be sent
to other programs, including:

■ &PPI ALERT

■ &PPI DEACTIVATE

■ &PPI DEFINE

■ &PPI DELETE

■ &PPI RECEIVE

■ &PPI SEND

■ &PPI STATUS

Note: For more information about the &PPI verb and its use, see the Network
Control Language Reference Guide.

Access PPI from NCL Processes

To access PPI facilities in NCL, use the &PPI NCL verb and two NCL system
variables, &ZPPI and &ZPPINAME.

Note: For more information about these verbs and system variables, see the
Network Control Language Reference Guide.

After an &PPI verb is executed from an NCL process, the &RETCODE NCL system
variable contains the return code that indicates success or failure. This value can
be used as a quick test to check whether the operation worked or not.
Generally, 0 indicates that there are no problems, 4 is a warning, 8 or 12
indicate errors of some sort. Return code 20 is only returned after &PPI RECEIVE
WAIT=NOTIFY if a notification message arrives later.

If an error code is returned in &RETCODE, the &ZFDBK system variable can be
used to investigate the error further. &ZFDBK contains the actual PPI return
code as returned in the RPB after a call, or a simulated return code if NCL
detected an error condition itself.

Access PPI Facilities

466 Network Control Language Programming Guide

Any NCL process in the system can use PPI services with the following
restrictions:

■ To receive data, a process must register itself to PPI with a unique name,
using the &PPI DEFINE option.

■ If a process does not register itself, and sends data, the PPI sender ID used is
the 6-digit NCLID (leading zeros) prefixed with a hash (#) character.

■ An NCL process can be defined as only one receiver at a time.

NCL PPI System Variables

The following system variables are available with the NCL PPI facility:

&ZPPI

Indicates whether or not PPI is available in this system.

&ZPPINAME

Contains the defined receiver ID of the current NCL process.

&RETCODE

Contains a normalized return code after &PPI verb execution. For more
information, see the &ZFDBK system variable.

As &RETCODE is set by many NCL statements, it should be inspected
immediately after an &PPI statement, or saved in a user variable for later
inspection.

&ZFDBK

Contains the actual PPI RPB RETCODE value after an &PPI verb execution. It
can be inspected as required when &RETCODE indicates an error condition
to determine the exact error.

As &ZFDBK is set by many NCL statements, it should be inspected
immediately after an &PPI statement, or saved in a user variable for later
inspection.

&ZVARCNT

Set after a successful &PPI RECEIVE to indicate the number of NCL tokens
that have had data placed in them.

Access PPI Facilities from Other Programs

Chapter 22: Program-to-Program Interface 467

NCL PPI User Variables

The following NCL user variables can be set by some &PPI verb operations:

&PPISENDERID

Set to the sender ID of a data buffer after a successful &PPI RECEIVE
operation. The sender ID can contain ampersand (&) characters.

&PPIDATALEN

Set to the actual byte length of the received data buffer after a successful
&PPI RECEIVE operation.

The &PPI RECEIVE also sets nominated user variables with the received data.

Access PPI Facilities from Other Programs

To access PPI facilities from programs other than this product, you construct
calls to the PPI. To make a call, you have to know the code for the request you
are making, construct a Request Parameter Block (RPB), and specify the PPI API.

IBM's PPI uses an API module named CNMNETV to manage the data that is
exchanged between programs. This product provides CNMNETM as the PPI API
which has an alias of CNMNETV.

Make PPI Calls

To make a PPI call

1. Construct a request parameter block (RPB) in a block of storage.

2. Make the call.

Access PPI Facilities from Other Programs

468 Network Control Language Programming Guide

Construct an RPB

All PPI calls require an RPB. An RPB is a block of storage and must be exactly 56
bytes long. An RPB describes the request you want to make of the PPI. The fields
specified in the RPB depend on the type of request you are making. PPI uses
other fields in the RPB to return data to your program.

The following table shows the request parameter block (RPB) format and
describes the fields that can be used to construct the RPB:

Note: Some fields overlap.

Bytes Name Description

00–03 RPBLEN A binary fullword that must contain the length of the
RPB. This field must be set to 56 (decimal or 38
hexadecimal). For compatibility with earlier releases
of PPI, a length of 40 (28 hexadecimal), 46 (2E
hexadecimal), or 52 (34 hexadecimal) is permitted.

04–05 REQUEST A binary halfword that must be set to the request
code for the PPI call. Valid request codes are
described later.

06–07 RECOPT A binary halfword that must be set to one of the
following values:

■ 0—No recovery is requested.

■ 1—ESTAE recovery is requested. Not valid if the
program is executing in cross-memory mode.

08–11 RETCODE A binary fullword that PPI sets with the return code
from the requested function. For more information
about possible return codes, see the function
descriptions.

12–15 WORKADR A binary fullword that must be set to the address of a
128-byte work area. This area must be provided on all
calls to the PPI. It need not be preserved across calls.

16–19 ASCBADDR A binary fullword, that is used to contain or return
the ASCB address of the current address space. This
field is used in various PPI calls.

Access PPI Facilities from Other Programs

Chapter 22: Program-to-Program Interface 469

Bytes Name Description

16–23 SENDERID For those calls that require it, the one- through
eight-character sender ID. If the supplied ID is less
than eight characters, it must be left-justified and
blank-padded.

20–23 ECBADDR A binary fullword, returned when a receiver is
defined, containing the address of an ECB that PPI
posts when data arrives.

20–23 BUFFQL A binary fullword, supplied when defining or
inactivating a receiver, that contains the receiver
buffer queue limit. The supplied value is used to limit
the number of buffers that can be queued to the
receiver.

24–31 RECVERID For those calls that require it, the one- through
eight-character receiver ID. If the supplied ID is less
than eight characters, it must be left-justified and
blank-padded.

32–35 BUFFLEN A binary fullword, supplied on some PPI calls, and
returned on others, that contains the length of a
supplied buffer or data, or the returned actual data
length.

32–33 AUTHIND A binary halfword, used when defining a receiver to
indicate whether senders must be APF authorized or
not. The following values are allowed:

■ 0—No APF authorization is required.

■ 1—Senders must be APF authorized to send to
this receiver.

34 FLAG1 Bit 0 (X'80') is set or reset by a request code 2 (query
receiver) to indicate whether the receiver queue is
full. The bit is set if the queue is not full or reset if full.

36–39 BUFFADDR A binary fullword that must be set to the address of a
sending or receiving buffer on some calls. The length
of this buffer must be set in the BUFFLEN field.

36–39 TCBADDR A binary fullword that must be set to the address of
the current TCB when defining a receiver, or is
returned on the 'get TCB/ASCB addrs' call.

40–45 RESERVED These fields are not used in z/OS.

Access PPI Facilities from Other Programs

470 Network Control Language Programming Guide

Bytes Name Description

46 REQIND1 Request indicator 1.

If you do not want to change an existing receiver
definition (even when the TCB/ASCB addresses
match), set bit 0 (X'80') before issuing a DEFINE
RECEIVER (request code 4). A return code of 16 is
returned instead.

If you want to determine the version of PPI in use, set
bit 1 (X'40') before issuing a QUERY PPI STATUS
(request code 1).

47 REQIND2 Request indicator 2 (presently unused).

48–51 VERSION Request code 1 returns the PPI version here if
requested to (by setting REQUIND1 to X'40' before
the call). The version returned is a fullword 1
indicating Tivoli NetView 2.4.

52–55 RESERVED Presently unused.

Specify Sender and Receiver IDs

The SENDERID and RECVERID fields of the RPB are used to specify sender and
receiver IDs as required. These IDs must adhere to the following rules:

■ 1 to 8 characters-if shorter than 8 characters, must be left justified and
blank padded, embedded blanks are not allowed.

■ The following characters can be used: A-Z, 0-9, @, #, $, %, &; no other
characters are allowed.

■ IDs starting with NETV or NETM are reserved and can only be defined by
your product's main task.

Access PPI Facilities from Other Programs

Chapter 22: Program-to-Program Interface 471

Make the Call

When making the PPI call, the following conventions must be followed:

■ Register 1 must point to a full word in storage that points to the RPB. The
end of parmlist bit (bit 0) of the full word can, but need not, be set.

■ Register 13 must point to a standard 18-word save area.

■ Register 14 must contain the return address in the calling program. This is
normally done using the BALR instruction.

■ Register 15 must contain the entry point of CNMNETM (or CNMNETV).

■ The program must be in primary addressing mode, not secondary, AR, or
HOME mode. It must be in TCB mode. SRB mode callers and cross-memory
callers are not supported.

In an XA or ESA environment, all addresses in these registers and in the pointer
to the RPB must be valid for the AMODE of the calling program. There is no
requirement to be in 31 bit mode.

Note: If a LOAD macro was used to obtain the address of CNMNETM
(CNMNETV), the top bit of the returned address can be set. It is acceptable to
use BALR, BASR, or BASSM to call it.

Most high-level languages follow the conventions automatically.

Upon return, registers are restored. Register 15 is set to 0. It does not contain a
return code. The return code is in the RPB.

Access PPI Facilities from Other Programs

472 Network Control Language Programming Guide

Sample PPI Calls

Some examples of PPI calls in various languages follow:

Assembler

CALL CNMNETV, (RPB)

CALL (R15), (RPB)

PL/1

CALL CNMNETV (RPB);

C

CNMNETV (RPB);

COBOL

CALL 'CNMNETV' USING RPB

Notes:

■ CA recommends that CNMNETV not be link-edited with the program.

■ In Assembler, use the LOAD macro to load CNMNETV and save the returned
address.

■ In PL/1, use the FETCH statement to load CNMNETV.

■ In COBOL (VS COBOL II, pointer ability is needed), use the DYNAM option.

Check PPI Status

Chapter 22: Program-to-Program Interface 473

Check PPI Status

To check the status of PPI, use request code 1. This request code allows an
application program to inquire about the status of the PPI facility. The return
code indicates whether it is active or not.

The RPB fields in the following table must be set:

Bytes Field Name Set to...

00–03 RPLEN 56.

04–05 REQUEST 1.

12–15 WORADDR The address of a 128-byte work area.

46 REQIND1 Bit 1(X'40') if you want the PPI version
returned.

48–51 VERSION Binary 0 so that a back-level PPI can be
detected correctly.

The RPB fields in the following table are returned after the call:

Bytes Field Name Contains

08–11 RETCODE The return code.

48–51 VERSION The PPI version number if RETCODE 10 is
returned. F'1' indicates Tivoli NetView 2.4.
F'0' indicates a prior release.

The following return codes are possible:

10

PPI is active and available to process requests.

24

PPI is not active.

28

PPI requests are not supported.

90

A processing error occurred.

Control Receiver Programs

474 Network Control Language Programming Guide

Control Receiver Programs

There are a number of request codes that can be used to obtain information
from, and control receiver programs:

2

Check the status of a receiver program

3

Obtain the ASCB and TCB addresses of a receiver program

4

Define and initialize a receiver program

9

Deactivate a receiver program

10

Delete an active receiver program

Each of these functions is described in the following sections.

Check the Status of a Receiver Program

To check the status of a receiver program, use request code 2. The return code
from this request indicates whether the receiver is defined, active, or inactive.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00–03 RPLEN 56.

04–05 REQUEST 2.

12–15 WORADDR The address of a 128-byte work area.

24–31 RECVERID The name of the receiver you want to
query.

Control Receiver Programs

Chapter 22: Program-to-Program Interface 475

The RPB fields in the following table are returned after the call:

Bytes Field Name Contains

08–11 RETCODE The return code.

34 FLAG The status of the receiver queue (for
RETCODE 14 and 15). Bit 0 is set if there is
space on the receiver queue or cleared if
the receiver queue is full.

The following return codes are possible:

14

The receiver program is active.

15

The receiver program is not active.

22

The requestor is not in primary addressing mode.

24

PPI is not active.

26

The receiver program is not defined.

28

PPI requests are not supported.

90

A processing error occurred.

Control Receiver Programs

476 Network Control Language Programming Guide

Obtain ASCB and TCB Addresses

To obtain ASCB and TCB addresses, use request code 3. This request code allows
application programs written in languages that do not allow you to obtain the
ASCB and TCB addresses of the current program, to obtain them. These
addresses are required for some other PPI request codes.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00–03 RPLEN 56.

04–05 REQUEST 3.

12–15 WORADDR The address of a 128-byte work area.

The RPB fields in the following table are returned after the call:

Bytes Field Name Contains

08–11 RETCODE The return code.

16–19 ASCBADDR The address of the current ASCB.

36–39 TCBADDR The address of the current TCB.

The following return codes are possible:

0

Request completed successfully.

22

The requestor is not in primary addressing mode.

24

PPI is not active.

28

PPI requests are not supported.

90

A processing error occurred.

Control Receiver Programs

Chapter 22: Program-to-Program Interface 477

Define and Initialize a Receiver

To define or initialize a receiver, use request code 4. This request code lets you
perform the following functions:

■ Define a receiver—it declares the name of the receiver and the buffer limit.

■ Initialize a receiver that does not exist.

■ Reactivate a defined but inactive receiver.

■ Alter the buffer queue limit. This function can be performed at any time, as
long as all the fields are specified, and the TCB/ASCB addresses match those
addresses of the defined receiver.

Changing the value of the buffer queue limit does not drop buffers if it is
reduced. The change only prevents additional buffers from being queued.

Prevent the accidental overwrite of an existing receiver definition by setting
REQIND1 to X'80'. This flag causes an exclusive-active check to be made,
that is, if the receiver is presently active, no change is made to it, regardless
of a match on the TCB/ASCB addresses.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00–03 RPLEN 56.

04–05 REQUEST 4.

06–07 RECOPT A recovery option as required.

12–15 WORADDR The address of a 128-byte work area.

16–19 ASCBADDR The address of the current ASCB (can be
obtained by a request type 3).

20–23 BUFFQL The buffer queue limit: 0 to PPI maximum
parameter.

24–31 RECVERID The receiver ID.

32–33 AUTHIND 0 if senders do not require authorization
or 1 if senders must be APF authorized.

36–39 TCBADDR The address of the current TCB (can be
obtained by a request type 3).

46 REQIND1 Bit 0 (X'80') if an exclusive-active check is
wanted.

Control Receiver Programs

478 Network Control Language Programming Guide

The RPB fields in the following table are returned after the call:

Bytes Field Name Set to...

08–11 RETCODE The return code.

20–23 ECBADDR The address of the receiver ECB.

The following return codes are possible:

0

Request completed successfully—ECB address is set.

16

The receiver program is already active, and the TCB/ASCB address did not
match, or they matched but the exclusive-active check flag (REQUIND=X'80')
is set.

22

The requestor is not in primary addressing mode.

24

PPI is not active.

25

The ASCB address is not correct.

28

PPI requests are not supported.

32

No storage is available.

36

ESTAE could not be established as requested.

40

Receiver ID is invalid.

90

A processing error occurred.

Control Receiver Programs

Chapter 22: Program-to-Program Interface 479

Notes:

■ Only this product can define receiver ID names starting with NETM or NETV,
unless the PPINETM/R parameters are set to NO.

■ The returned ECB-address field provides the address of an ECB, in the TCB
key of the caller, in a protected subpool (that is, cannot be freed by user
code), that is posted when buffers are available to the receiver. Do not alter
this ECB, which is automatically cleared and posted when relevant.

■ The return code is 0 if buffers are available, and 99 if the PPI facility is
shutting down.

■ Tivoli NetView 2.4 lets you define a receiver passing a zero ASCB
address—in this case, it does not allocate an ECB. The SOLVE PPI does not
support this feature and returns RETCODE=25 (invalid ASCB address).

Deactivate a Receiver

To deactivate a receiver program, use request code 9. If a receiver is not
deactivated explicitly, it is deactivated at end of task or end of address space of
the associated task/address space. Explicit deactivation lets you reset the buffer
queue limit.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00–03 RPLEN 56.

04–05 REQUEST 9.

06–07 RECOPT A recovery option as required.

12–15 WORADDR The address of a 128-byte work area.

16–19 ASCBADDR The address of the current ASCB (can be
obtained by a request type 3).

20–23 BUFFQL The buffer queue limit: 0 to PPI maximum
parameter.

24–31 RECVERID The receiver ID.

Control Receiver Programs

480 Network Control Language Programming Guide

The RPB field in the following table is returned after the call:

Bytes Field Name Set to...

08–11 RETCODE The return code.

The following return codes are possible:

0

Request completed successfully—ECB address is set.

15

The receiver program is already inactive.

22

The requestor is not in primary addressing mode.

24

PPI is not active.

25

The ASCB address is not correct.

26

The receiver program is not defined.

28

PPI requests are not supported.

36

ESTAE could not be established as requested.

40

Receiver ID is invalid.

90

A processing error occurred.

Note: Only the owning task/address space can explicitly deactivate a receiver.

Control Receiver Programs

Chapter 22: Program-to-Program Interface 481

Delete an Active Receiver

To delete an active receiver program, use request code 10. Any unreceived data
buffers are purged.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00–03 RPLEN 56.

04–05 REQUEST 10.

06–07 RECOPT A recovery option as required.

12–15 WORADDR The address of a 128-byte work area.

16–19 ASCBADDR The address of the current ASCB (can be
obtained by a request type 3).

24–31 RECVERID The receiver ID.

The RPB field in the following table is returned after the call:

Bytes Field Name Set to...

08-11 RETCODE The return code.

The following return codes are possible:

0

Request completed successfully—the receiver has been deleted.

15

The receiver program is already inactive.

22

The requestor is not in primary addressing mode.

24

PPI is not active.

25

The ASCB address is not correct.

Send a Generic Alert

482 Network Control Language Programming Guide

26

The receiver program is not defined.

28

PPI requests are not supported.

36

ESTAE could not be established as requested.

40

Receiver ID is invalid.

90

A processing error occurred.

Note: Only the owning task or address space can explicitly delete a receiver.

Send a Generic Alert

To send a generic alert, use request code 12. No special PPI setup is required.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00–03 RPLEN 56.

04–05 REQUEST 12.

06–07 RECOPT A recovery option as required.

12–15 WORKADDR The address of a 128-byte work area.

32–35 BUFFLEN The length of the generic alert data.

36–39 BUFFADDR The address of the generic alert data.

The RPB field in the following table is returned after the call:

Bytes Field Name Set to...

08–11 RETCODE The return code.

Send a Generic Alert

Chapter 22: Program-to-Program Interface 483

The following return codes are possible:

0

Request completed successfully.

4

The ALERT receiver task (NETVALERT) is not active—the alert has been
queued.

22

The requestor is not in primary addressing mode.

24

PPI is not active.

26

The NETVALERT receiver program is not defined.

28

PPI requests are not supported.

32

No storage is available.

33

The buffer length is invalid.

35

Alert receiver buffer queue is full.

36

ESTAE could not be established as requested.

40

Sender ID is invalid.

90

A processing error occurred.

Note: The generic alert must include the 8-byte NMVT header.

The default buffer queue limit for the alert receiver is 1000 generic alerts.

A return code of 22 or greater means that the alert has not been copied to the
alert receiver queue.

Control Data Buffers

484 Network Control Language Programming Guide

If no hierarchy or resource list subvector is provided in the generic alert, the
sender ID is used as the resource name.

PPI does not release the data buffer storage. Your program must release storage
if necessary.

Control Data Buffers

There are a number of request codes that can be used to control the sending
and receiving of data buffers:

14

Sending a data buffer to a receiver program

22

Allowing a receiver program to receive a data buffer

23

Purging a data buffer from a receiver program

Send a Data Buffer to a Receiver

To send a data buffer to a receiver program, use request code 14. The receiver
program does not need to be active. As long as its buffer queue limit is not
exceeded, the data buffer is queued to it.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00–03 RPLEN 56.

04–05 REQUEST 14.

06–07 RECOPT A recovery option as required.

12–15 WORKADDR The address of a 128-byte work area.

16–23 SENDERID A valid sender ID.

24–31 RECVERID The target receiver ID.

32–35 BUFFLEN The length of the data buffer to send.

36–39 BUFFADDR The address of the data buffer to send.

Control Data Buffers

Chapter 22: Program-to-Program Interface 485

The RPB field in the following table is returned after the call:

Bytes Field Name Set to...

08–11 RETCODE The return code.

The following return codes are possible:

0

Request completed successfully.

4

The specified receiver is not active-the buffer has been queued.

22

The requestor is not in primary addressing mode.

23

The sender program is not authorized.

24

PPI is not active.

26

The receiver program is not defined.

28

PPI requests are not supported.

32

No storage is available.

33

Buffer length is invalid.

35

The receiver buffer queue is full.

36

ESTAE could not be established as requested.

Control Data Buffers

486 Network Control Language Programming Guide

40

Sender ID is invalid.

90

A processing error occurred.

Notes:

■ If sending a buffer to a receiver defined as authorized, the sender must be
APF authorized.

■ After the call the data buffer is queued to the nominated receiver.

■ The PPI does not release the data buffer storage. Your program must
release the storage if necessary.

Allow a Receiver to Receive a Data Buffer

To allow a defined, active receiver to receive a data buffer, use request code 22.
The next buffer in the receiver buffer queue is made available in the
user-provided area.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00–03 RPLEN 56.

04–05 REQUEST 22.

06–07 RECOPT A recovery option as required.

12–15 WORKADDR The address of a 128-byte work area.

16–19 ASCBADDR The receiver ASCB address.

20–23 ECBADDR The receiver ECB address—this field is set
only when RETCODE 30 is returned.

24–31 RECVERID The target receiver ID.

32–35 BUFFLEN The length of the data buffer to send.

36–39 BUFFADDR The address of the data buffer to send.

Control Data Buffers

Chapter 22: Program-to-Program Interface 487

The RPB fields in the following table are returned after the call:

Bytes Field Name Set to...

08–11 RETCODE The return code.

16–23 SENDERID The ID of the sender of this buffer.

32–35 BUFFLEN The actual data buffer length.

The following return codes are possible:

0

Request completed successfully.

22

The requestor is not in primary addressing mode.

24

PPI is not active.

25

The ASCB address is not correct.

26

The receiver program is not defined.

28

PPI requests are not supported.

30

No data buffers are in the receiver buffer queue.

31

The receiver buffer size is not large enough for the incoming data buffer.

33

Buffer length is invalid.

35

The receiver buffer queue is full.

36

ESTAE could not be established as requested.

Control Data Buffers

488 Network Control Language Programming Guide

40

Sender ID is invalid.

90

A processing error occurred.

The correct ASCB address is required. This address is the ASCB address provided
when the receiver was defined.

One data buffer at a time can be received. They are provided first-in-first-out
order. If the call is successful, the sender ID of the sending program is provided.

The length of the incoming buffer is provided in the BUFFLEN field after the call.
If a return code 31 (buffer too small) is given, BUFFLEN contains the required
length to receive the buffer successfully. The call can be reissued after obtaining
a large enough buffer.

If no data is queued, a return code of 30 is given and the ECBADDR field is set to
the ECB address, as returned by DEFINE RECEIVER. The receiver can wait (using
the WAIT macro or request code 24) until more data arrives.

Purge the Data Buffer

To allow the caller to purge the front buffer on a receiver queue, use request
code 23. It is equivalent to receiving the buffer and ignoring it, except that no
receiver buffer is needed, which is useful for purging buffers that are too long.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00–03 RPLEN 56.

04–05 REQUEST 23.

06–07 RECOPT A recovery option as required.

12–15 WORKADDR The address of a 128-byte work area.

16–19 ASCBADDR The address of the current ASCB.

24–31 RECVERID The target receiver ID.

Control Data Buffers

Chapter 22: Program-to-Program Interface 489

The RPB field in the following table is returned after the call:

Bytes Field Name Set to...

08–11 RETCODE The return code.

The following return codes are possible:

0

Request completed successfully—the front data buffer has been purged.

22

The requestor is not in primary addressing mode.

24

PPI is not active.

25

The ASCB address is not correct.

26

The receiver program is not defined.

28

PPI requests are not supported.

30

No data buffers are in the receiver buffer queue.

36

ESTAE could not be established as requested.

40

Sender ID is invalid.

90

A processing error occurred.

Wait on an ECB

490 Network Control Language Programming Guide

Notes:

■ The correct ASCB address is required-that is, the ASCB address provided
when the receiver was defined.

■ Only one data buffer at a time can be purged.

■ If no buffers are queued, return code 30 is returned.

Wait on an ECB

To allow the caller to wait on an ECB, use request code 24. This request code
allows receiver programs written in languages that do not support a WAIT
service to wait for input.

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00–03 RPLEN 56.

04–05 REQUEST 24.

12–15 WORKADDR The address of a 128-byte work area.

20–23 ECBADDR The address of the ECB.

The RPB field in the following table is returned after the call:

Bytes Field Name Set to...

08–11 RETCODE The return code.

The following return codes are possible:

0

Request completed successfully—the ECB has been posted.

18

The ECB was not 0 on entry to this function—it might have been already
posted.

22

The requestor is not in primary addressing mode.

Obtain a Unique Sender or Receiver ID

Chapter 22: Program-to-Program Interface 491

24

PPI is not active.

28

PPI requests are not supported.

Important! Use this function only if your programming language does not
support a WAIT facility. Unpredictable results can occur if the PPI subsystem is
terminated while you are waiting using this request.

The ECB address is returned by a request code 4 (define a receiver).

You can wait using request code 24 after receiving a return code 30 from
receive.

Remember to test the ECB post code in the last byte of the ECB for 0 (data
available) or 99 (PPI shutting down).

Obtain a Unique Sender or Receiver ID

To obtain a unique sender or receiver ID, use request code 60. This request code
is useful when establishing a bidirectional conversation with another program.
The other program can be a globally known program, with a known ID.
However, this program cannot use a reserved, unique ID. In this case it can use
this service to obtain a valid, unique ID.

This service is only supported by this product's implementation of PPI (known as
SOLVE PPI).

The RPB fields in the following table must be set up before the call:

Bytes Field Name Set to...

00–03 RPLEN 56.

04–05 REQUEST 24.

12–15 WORKADDR The address of a 128-byte work area.

Obtain a Unique Sender or Receiver ID

492 Network Control Language Programming Guide

The RPB fields in the following table are returned after the call:

Bytes Field Name Set to...

08–11 RETCODE The return code.

24–31 RECVERID The returned unique ID.

The following return codes are possible:

0

Request completed successfully—a unique ID has been allocated.

20

Function is invalid (not the SOLVE PPI).

22

The requestor is not in primary addressing mode.

24

PPI is not active.

28

PPI requests are not supported.

90

A processing error has occurred—this error also indicates that no more
unique IDs are available.

The returned ID is in the format: pppp&nnn where pppp is the 1- to 4-character
PPI name prefix, as set by one of the PPI SSI JCL parameters. If less than four
characters, it is padded to four characters with ampersand (&) characters.
Position 5 is always an ampersand. Positions 6 through 8 are allocated from the
following characters: 0 through 9, A through Z, @, #, $, and %. This allocation
allows up to 64000 unique IDs.

Unique IDs can be reused. If an ID is obtained, defined and inactivated, and
nothing is queued to it, then, subject to the PPIINATO and PPIREUSE SSI startup
parameter values, the ID can be made available for reuse.

If the PPI prefix is set to the same value as the domain ID associated with the
product, then these IDs are also unique across the connected network.

Receive Information from a Receiver Program

Chapter 22: Program-to-Program Interface 493

Receive Information from a Receiver Program

When you receive information from a receiver program after sending a PPI call,
a number of return codes are possible. The following table provides a full list of
possible PPI return codes, a complete description of the possible causes, and all
request codes that can cause that return code.

Note: These are the RPB return codes. NCL interface return codes (in
&RETCODE) are different. The NCL interface returns the PPI return code in
&ZFDBK for information purposes.

Return
Code

Description Returned on
Requests

0 The PPI request has completed successfully. The
requested function has been performed with no
errors or warnings.

3, 4, 9, 12, 14,
22, 24, and 60

4 The specified receiver is not presently active. The
data buffer or generic alert has been queued. (The
receiver buffer queue was not full).

12 and 14

10 The PPI facility is active and can be used. This return
code is good.

1

14 The receiver program is active. 2

15 The receiver program is (already) inactive. The
program is defined, but has been explicitly or
implicitly deactivated.

2 and 9

16 The receiver program is already active. The program
cannot be defined.

4

18 The ECB is not 0 (normally the receiver ECB). This
condition is not necessarily an error because the
ECB can be posted after it was last checked.

24

20 Request type is invalid. The passed request code
was not valid. This condition can occur with request
code 60 if this product is not providing the PPI.
Otherwise, it is probably an error in formatting of
the RPB.

Any incorrect
request

Receive Information from a Receiver Program

494 Network Control Language Programming Guide

Return
Code

Description Returned on
Requests

22 The program is not executing in primary addressing
mode. Programs must not call the PPI in secondary
mode (z/OS). They must be in primary mode,
although they can be in cross-memory mode (that is
primary ^= home).

1, 2, 3, 4, 9, 12,
14, 22, 24, and
60

23 The program is not authorized. Attempt to send a
buffer to a receiver defined as authorized.

14

24 PPI is not active. The SSI is not active or PPI is not
running on a SOLVE SSI or Tivoli NetView SSI. In this
product's implementation, can also indicate that
this system does not support PPI, as it has not built
the relevant control block structure.

All

25 The ASCB address is not correct. To deactivate a
receiver or receive data, the correct ASCB address
must be supplied.

9 and 22

26 The receiver is not defined. The supplied receiver
name has never been defined to this execution of
PPI.

Note: This condition could occur if the PPI-owning
SSI is stopped and restarted.

2, 9, 12, 14,
and 22

28 This product does not support PPI. This return code
cannot occur with the implementation of the SOLVE
PPI. It can occur if Tivoli NetView is providing PPI
services.

All

30 No data buffers are available in the receiver queue.
There is no data to be received. PPI clears the
receiver ECB automatically.

22

31 The receiver data buffer length is too short to
receive the next data buffer. The RPB buffer length
contains the length of the pending buffer.

22

32 No storage available. Unable to obtain storage
required to complete the requested function.

4, 12, and 14

33 Invalid buffer length. The supplied RPB or data
buffer length was not valid. For a data buffer, the
length must be less than 1 or greater than the PPI
maximum buffer size JCL parameter.

All

Trace the Cause of a Processing Error

Chapter 22: Program-to-Program Interface 495

Return
Code

Description Returned on
Requests

35 The receiver buffer queue is full. As the queue is
full, the new data buffer is not added to the queue.

12 and 14

36 Unable to establish ESTAE protection as requested.
Either the caller is not in home mode, or the ESTAE
gave a nonzero return code.

All

40 The specified receiver or sender ID is invalid. The
value does not satisfy the documented rules for
these IDs, or (when defining, deactivating, or
receiving for a receiver), starts with NETV or NETM
and the requesting task is not the SSI-connected
product region.

4, 9, 12, 14,
and 22

90 A processing error has occurred. This return code is
a catch-all that covers many things:

■ ESTAE-trapped ABENDs

■ Various internal errors

All

In addition to these return codes, some fundamental errors can cause S0C4
ABENDs. These errors would include an RPB that cannot be referenced, or a bad
work-storage address. A bad save area address (for example, a 31-bit address
for a 24-bit mode caller) can also cause it.

Trace the Cause of a Processing Error

Return code 90 indicates that a processing error occurred. This return code has
a trace facility that lets you determine the cause of the processing error. This
facility is enabled during SOLVE SSI setup.

When you issue a PPI call, processing messages from the receiver program are
written as WTOs to your system console. If tracing is enabled, and a return code
of 90 is recorded in register 15, register 0 records debugging information which
is also sent to the system console. This additional information can be used by
you to debug the processing error.

Note: For more information about PPI parameters, see the SOLVE Subsystem
Interface Guide.

Trace the Cause of a Processing Error

496 Network Control Language Programming Guide

Register 0 contains the debugging information as follows:

X'rrrrmm5A'

rrrr

Is the reason code of the debugging information, in signed hexadecimal,
length 2 bytes. For example, a reason code of 10 would be X'000A' and -141
would be X'FF73'.

mm

Is the module identification of the debugging information in hexadecimal.
For example, 35 would be X'23'.

5A

Is 90 in hexadecimal, which indicates that the debugging information has
been set in R0.

Following is the resulting message format that you receive on the system
console:

NS3580 PPI RC=90 MOD=aa REAS=bbbbbb - RPB FOLLOWS...

NS3581 RPB +nnn xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

NS3581 ... (for total RPB length)

NS3582 *END*

The fields in the messages are:

MOD=aa

Contains the module identification of the debugging information, in
decimal. For example, MOD=35.

REAS=bbbbbb

Contains the (signed) reason code of the debugging information, in decimal.
For example, REAS=-00121.

+nnn

Contains the offset, in hexadecimal, of the start of the hexadecimal dump of
the RPB (up to 16 bytes is dumped per line).

xxxxxxxx

8 hexadecimal digits representing RPB data.

Trace the Cause of a Processing Error

Chapter 22: Program-to-Program Interface 497

Debugging Codes

The following table provides a list of all the most likely combinations of
debugging module IDs and reason codes, with a brief description of the causes
of each. If you receive any other module IDs, contact the help desk.

MOD REASON R0 Description

35 1 0001235A No work storage address or bad address

35 2 0002235A Recovery option not 0 or 1

35 4 0004235A ESTAE exit driven

36 4 0004245A ESTAE exit driven

36 5 0005245A Bad BUFQ-LIM value

36 6 0006245A Bad RPB AUTH-IND option value (not 0 or 1)

37 1 0001255A Define receiver TCB/ASCB not correct

37 2 0002255A Redefine inactive receiver TCB/ASCB incorrect

37 4 0004255A FRR driven during Send Buffer processing

37 5 0005255A FRR driven during Receive Buffer processing

37 6 0006255A All unique names in use (PPI func. 60)

Chapter 23: &NDB Verbs, Built-in Functions, and System Variables 499

Chapter 23: &NDB Verbs, Built-in Functions,
and System Variables

This section provides a summary of verbs, built-in functions, and system
variables used by NetMaster databases (NDBs).

Note: For more information about these verbs, see the Network Control
Language Reference Guide.

This section contains the following topics:

&NDB Verb Summary (see page 500)
Built-in Function Summary (see page 501)
System Variable Summary (see page 501)
Free-form Syntax (see page 502)

&NDB Verb Summary

500 Network Control Language Programming Guide

&NDB Verb Summary
&NDBADD

Adds a new record to an NDB.

&NDBCTL

Sets NDB NCL processing options.

&NDBCLOSE

Signs off (disconnect) from an NDB.

&NDBDEF

Adds or deletes field definitions to/from an NDB.

&NDBDEL

Deletes a record from an NDB.

&NDBFMT

Defines a data format list for retrieval of data from an NDB.

&NDBGET

Retrieves a record from an NDB.

&NDBINFO

Retrieves information about an NDB or field definitions in the NDB.

&NDBOPEN

Signs on (connect) to an NDB.

&NDBSCAN

Finds a set of records in an NDB that matches a set of search criteria.

&NDBSEQ

Defines a sequential retrieval path into an NDB.

&NDBUPD

Updates a record in an NDB.

Built-in Function Summary

Chapter 23: &NDB Verbs, Built-in Functions, and System Variables 501

Built-in Function Summary
&NDBPHON

The &NDBPHON function is a phonetic conversion function which allows
conversion of a character string into a phonetic key. The conversion
algorithm supplied is SOUNDEX. However, a user-supplied exit can be called.
The user exit can implement any approach to phonetic conversion.

The SOUNDEX algorithm is as per KNUTH (Art of Computer Programming,
Volume III). The returned value is Knnn where K is the first character and
nnn is the SOUNDEX coded value.

A sample exit, PHONEX01, shows how to write a phonetic exit. The
NDBPHONX SYSPARMS supply the name of the user exit.

&NDBQUOTE

Allows an NCL procedure to automatically quote data for the &NDBADD,
&NDBGET, &NDBSCAN, and &NDBUPD statements.

System Variable Summary
&NDBERRI

Provides extra information about some errors.

&NDBRC

Provides a return code indicating success or otherwise after an &NDB
statement.

&NDBRID

Provides the current record ID after some &NDB statements.

&NDBSQPOS

Indicates the position of a returned record in a sequence built by
&NDBSCAN.

Free-form Syntax

502 Network Control Language Programming Guide

Free-form Syntax

Several NCL statements use a special syntax, different from normal NCL syntax,
to allow easy coding of data definitions and scan requests. The relevant
statement descriptions indicate the part of the statement that uses the
free-form syntax. The free-form part must always be coded after any fixed-form,
standard NCL-syntax parameters on the same statement. The rules for this
free-form syntax are:

■ Blanks are only required to delimit adjacent words, except inside data
values. Blanks are not required, but may be specified, around or next to
special characters that act as delimiters.

Blanks inside data values are significant, except that trailing blanks are
never stored in character-format data.

NCL variables with blanks in the value are regarded as a special case, and
the blank is regarded as part of the data value. This is because blanks inside
NCL variables are represented internally in a special way.

■ The following special characters act as delimiters, unless enclosed in a
quoted string. They have special meaning to the syntax:

(Left bracket

) Right bracket

: Colon (meaning: range)

= Equal sign

¬ Not sign

< Less than sign

> Greater than sign

& Ampersand (meaning: AND)

| Bar (meaning: OR)

, Comma

Real blank (not embedded in an NCL variable)

Certain combinations of these characters are treated as a single token for
parsing. These combinations are p =, < =, >=, and =<, =>, meaning not
equal, less than or equal, greater than or equal, less than or equal, and
greater than or equal, respectively.

Free-form Syntax

Chapter 23: &NDB Verbs, Built-in Functions, and System Variables 503

■ Values may be enclosed in quoted strings whenever the value contains a
special character, or a real blank.

The quotes can be single (') or double(”). If the data value being quoted
contains a single or double quote, you can quote the data with the other
quote, or double up each occurrence of the quote character.

For example, 'It”s a quoted value' will be regarded as the value It's a quoted
value.

The &NDBQUOTE built-in function provides an easy way to automatically
quote data when necessary.

A data value can always be quoted, even date, hexadecimal, or numeric
values. Quoting also prevents any possibility of the value being regarded as
a keyword.

■ The following words can be used instead of special characters, as an aid to
clarity. If surrounded by other words, ensure at least one blank separates
them.

– EQ can be used to replace =

– NE can be used to replace ¬=

– LT can be used to replace<

– GT can be used to replace >

– LE can be used to replace=<

– GE can be used to replace=>

– AND can be used to replace&

– OR can be used to replace |

– TO can be used to replace :

– NOT can be used to replace ¬

Free-form Syntax

504 Network Control Language Programming Guide

■ Several statements support a START/DATA/END construct to allow
free-form expressions to be constructed that are longer than a single NCL
statement is allowed to be. These statements can be coded as:

&NDBxxxx dbname [parameters] [DATA] free-form text

if the free-form text can fit on one statement (with possible continuations).

To overcome NCL statement length limitations, and also to allow the
free-form text to be built piece-meal (for example, by indirect variable
reference), the statements can also be coded as:

&NDBxxxx dbname [parameters] START

&NDBxxxx dbname [DATA] part-of-free-form-text

&NDBxxxx dbname END

The free-form text can be broken anywhere a blank is valid. Any number of
intermediate statements can be used to build the complete free-form text.
The database is not called until the END statement is encountered.

Any other parameters must be coded on the &NDBxxx START statement.

Note: The statements may be interspersed with other NCL statements,
including statements referencing other or even the same database, and
even statements building free-form text for the same database, as long as
they are different statements. That is, you can be concurrently building a
multi-statement add and update for the same database, but not two
different adds for the same database.

To cancel a partially built statement, use:

&NDBxxx dbname CANCEL

This statement is valid even if no current START/END set is being built; thus
it can be used in general error routines.

Appendix A: NCL VSAM Techniques 505

Appendix A: NCL VSAM Techniques

This section contains the following topics:

Initialization and ACB Open Processing (see page 505)
RPL Handling (see page 507)
Obtain I/O Buffers (see page 507)
Concurrent Access to Multiple UDBs (see page 508)
Data Set Positioning and Generic Retrieval (see page 508)
Release File Processing Resources (see page 509)
Display File Information (see page 510)
Control UDB Performance (see page 511)
Offline Processing of Data Sets (see page 512)

Initialization and ACB Open Processing

You can allocate and open UDBs at any time by using the ALLOCATE and UDBCTL
commands. With certain UDBs, you might want to use some of the more
advanced VSAM facilities that your product supports. For example, you might
want to specify use of the LSR pool or sequential insert strategy (SIS) to improve
system performance.

Use of these optional facilities must be requested on the UDBCTL command at
open time. During the open process, a VSAM ACB is generated for each data set
and an open attempted. If the open fails, the system internally links to IDCAMS
to perform a verify of the data set. Therefore, it is not necessary to include
verify steps in the system JCL.

Automatic Verification and Loading

On completing the verify function, the open is re-attempted. If the data set is
empty, the system closes and re-opens the data set in create mode and
attempts to perform a load according to the following rules:

Initialization and ACB Open Processing

506 Network Control Language Programming Guide

For Entry-Sequence Data Sets (ESDS)

For an ESDS a single record in the following format is loaded:

N28510 VSAM INITIAL LOAD PERFORMED AT hh.mm.ss

ON day-dd.mon.year

This initial load record remains in the ESDS and if necessary can be skipped
during offline processing by using the IDCAMS utility to REPRO the data set
specifying the SKIP=1 operand.

Note: This load process is performed only if the data set is classified by VSAM as
being empty. This implies that the high-order RBA is 0. If data exists within the
data set when it is opened, then the load process is bypassed.

In a z/OS environment, where output is sent directly to JES2 or JES3, no load
processing is required and hence the N28510 message is not the first record in
the file.

If the load fails, the data set is classified as unusable and is blocked from further
processing until the problem is corrected. The SHOW UDB command can be
used to determine the current status of a UDB and displays any error code
detected during open processing. If necessary, the data set in a z/OS
environment can be de-allocated using the DEALLOC command to assist in
offline correction of problems.

For Key-Sequenced Data Sets (KSDS)

For a KSDS, a single record with a key of all X'00' is inserted into the data set. If
the load is successful, the data set is closed and re-opened in update mode and
the initial load record deleted. If the load fails, the data set is classified as
unusable and is blocked from further processing. The SHOW UDB command can
be used at any time to determine the status of a UDB and if necessary to obtain
any error code set during open processing.

The loading of alternate indices by your product is not supported. This must be
performed using the IDCAMS BLDINDEX function. Once built, these indices are
maintained correctly.

RPL Handling

Appendix A: NCL VSAM Techniques 507

RPL Handling

Until a file is opened (using an &FILE OPEN statement) by an NCL procedure, no
RPLs are created and no work buffers allocated.

Before a UDB can be referenced by a procedure, the UDBCTL command must be
used to assign a logical file ID to the physical data set. This command can be
included in the NMINIT procedure or entered from OCS.

To open a file, an NCL procedure uses an &FILE OPEN statement. This statement
references the logical file ID previously assigned by the UDBCTL command, and
in doing so completes the link between the NCL procedure and the actual data
set.

It is at this time that a VSAM RPL is created for use by the NCL procedure. This
RPL is used in all subsequent requests for this data set by the procedure. The
RPL remains in existence until either explicitly freed by the &FILE CLOSE
statement, or termination of the NCL procedure. When processing with multiple
files, one RPL is created for each new file ID the first time that the file is opened.

Obtain I/O Buffers

At the time the RPL is generated an I/O buffer is also obtained. This buffer is
large enough to hold the largest record that could be read from, or written to,
the UDB. Therefore, it is important to accurately define the record sizes when
the VSAM cluster is allocated. Specification of record sizes in excess of that
required not only impacts VSAM algorithms for space allocation, but also forces
your product to obtain buffers of an unnecessary size, thus wasting storage.

Concurrent Access to Multiple UDBs

508 Network Control Language Programming Guide

Concurrent Access to Multiple UDBs

An NCL procedure can actively process several UDBs at a time. The mandatory
ID= operand on the &FILE verbs, indicates which UDB the verb is to be actioned
upon. Each file must be opened separately, using an &FILE OPEN statement
before reads and writes can be performed on it. There is no overhead in
processing several files simultaneously, because NCL merely swaps pointers
between the work buffers and RPLs used for each file, according to the ID
specified on the &FILE verb.

Current keys and data set positioning are remembered by NCL when processing
swaps from one file to another, so it is not necessary for the NCL procedure to
remember these.

The example in the next section, of copying one file to another, shows how
processing can be alternated between two files.

Data Set Positioning and Generic Retrieval

NCL supports both sequential and generic retrieval from keyed data sets. Such
functions imply that a current position within the file is maintained. Thus, the
NCL procedure can simply request the next record and it is supplied.

Example: Data Set Positioning and Generic Retrieval

&FILE OPEN ID=FILE1 FORMAT=DELIMITED -* Open file 1

&FILE OPEN ID=FILE2 FORMAT=DELIMITED -* Open file 2

.LOOP

 &FILE GET ID=FILE1 OPT=SEQ VARS=A* RANGE=(1,6)

 -* Read record

 &IF &FILERC NE 0 &THEN &GOTO .ENDPROC

 -* End if not 0

 &X = &FILEKEY -* Copy key of

 -* record that was

 -* read into

 -* variable

 &FILE PUT ID=FILE2 KEYVAR=X VARS=(A1,A2,A3,A4,A5,A6)

 -* Write record

 &GOTO .LOOP -* Loop to read

 -* next record on

 -* file 1

Note: This example does not fully cater for such things as error conditions.

It is not necessary for the NCL procedure to increment keys.

Release File Processing Resources

Appendix A: NCL VSAM Techniques 509

Under certain circumstances, such as with generic retrieval, it might be
necessary to alter the retrieval sequence and commence retrieval using a
different key.

NCL must be informed that such a change is required and that the current
retrieval sequence is to be stopped. This is done using the &FILE GET ID=fileid
OPT=END statement. This indicates to NCL that generic retrieval is to be
terminated in anticipation of some other processing.

If an end-of-file condition is signaled, no &FILE GET ID=fileid OPT=END is
required. The use of a non-generic function, such as the specific retrieval of a
record, also cancels a previous generic function.

Release File Processing Resources

The &FILE OPEN statement allocates certain resources to the requesting NCL
procedure. It is not normally necessary to release file processing resources
within an NCL procedure. This is performed automatically when the NCL
procedure terminates.

Under certain circumstances, such as in an EASINET procedure, where there can
be many concurrent users performing file processing, it might be desirable to
release any file processing overheads when they are no longer required, to
ensure that system overheads are minimized.

This can be done with the &FILE CLOSE statement. &FILE CLOSE allows either
specific files or all files to be freed. When this is done, any storage associated
with processing the file is released and the connection is logically severed for
that user.

Having used &FILE CLOSE to release a particular file, connection can be
re-established using another &FILE OPEN statement.

&FILE CLOSE destroys any generic retrieval position a user might have
established within a file and any subsequent reference would have to
re-establish that position if required.

Display File Information

510 Network Control Language Programming Guide

Display File Information

The SHOW UDB command can be used to display details about files available to
the system. This information includes details about the number of active users,
space usage, and the status. In addition, any open error codes that caused a file
to be disabled are displayed.

The SHOW VSAM command can be used to obtain additional details about the
system's VSAM files. These include record and Control Interval sizes, statistics
on the number of CI and CA splits and details of any buffer or string shortages
that have been experienced. In OS/VS systems, this display also provides details
on the performance of the Local Shared Resource (LSR) pool if one is in use.

Note: For more information about the SHOW UDB and SHOW VSAM commands
and their use, see the online help.

Control UDB Performance

Appendix A: NCL VSAM Techniques 511

Control UDB Performance

The techniques used by NCL should ensure efficient processing of VSAM files.
Additional performance gains can be obtained by the allocation of additional
buffers and processing strings.

This is achieved using the JCL AMP statement sub parameters on the DD
statement for the file, or by specification of these options on the UDBCTL
command:

BUFNI

The number of index buffers to be allocated by VSAM

BUFND

The number of data buffers to be allocated by VSAM

STRNO

The maximum number of concurrent strings to be used by VSAM

Additional facilities are offered as options on the UDBCTL command. They
include:

SIS

Use Sequential Insert Strategy

DEFER

Use deferred writes

LSR

Use Local Shared Resource pool

Important! These parameters should only be changed if the impact on VSAM
processing is clearly understood. Inadvertent changes can impose severe
storage overheads which could impact the operation of other system
components.

Offline Processing of Data Sets

512 Network Control Language Programming Guide

Offline Processing of Data Sets

In a z/OS environment, the DEALLOCATE command can be used to release a
UDB for offline processing. Conversely, the ALLOCATE command can be used to
bring a UDB on-line for processing.

In non-z/OS environments, the stripping of files, created by NCL for further
offline processing, can be achieved without a restart of the system if the
following rules are followed:

■ VSAM SHAREOPTIONS must allow concurrent access to the data set.

■ DISP=SHR must be specified on the data set.

■ The UDBCTL CLOSE command is used to stop further logical connections to
the file and to physically close the file. This is only successful if there are no
active users currently referencing the file. The SHOW UDBUSER command
can be used to display the current user of a UDB.

■ Use a utility to strip the file (for example, the VSAM IDCAMS utility REPRO
facility).

If the UDB has been processed using standard format, any offline processing
programs must take the high-value (X'FF') field separators into account when
determining the format of data within records.

To allow non-UDB format files to be processed, your product provides a format
operand on the &FILE OPEN and &FILE SET statements, that designates the
format of the files being processed.

Appendix B: System Level Procedures: Message Profiles 513

Appendix B: System Level Procedures:
Message Profiles

This section contains the following topics:

Use NCL Verbs to Retrieve Messages (see page 513)
System Level Procedure Environments (see page 514)
Message Handling and Processing by System Level Procedures (see page 515)
Decide What to Do with a Message (see page 516)
Message Profile (see page 517)
&INTREAD Message Profile (see page 524)
&LOGREAD Message Profile (see page 529)
&MSGREAD Message Profile (see page 533)
&PPOREAD Message Profile (see page 537)

Use NCL Verbs to Retrieve Messages

There is a series of NCL verbs that are used to retrieve messages that are
queued to particular NCL process environments. The verbs of this type are:

■ &INTREAD

■ &LOGREAD

■ &MSGREAD

■ &PPOREAD

In addition, there is the &AOMREAD verb if you have the AOM feature and
&CNMREAD if you have the NEWS feature on your system.

System Level Procedure Environments

514 Network Control Language Programming Guide

System Level Procedure Environments

The term system level procedure applies to those specific NCL procedures that
have access to specialized flows of information in a product region. In this
region, there are several system level procedures, the principal ones being
LOGPROC and PPOPROC. LOGPROC has access to and control over the flow of
messages to the activity log. PPOPROC receives unsolicited messages from
VTAM about events within the network.

The significant aspect of the special procedures is that there is only one of each
in the system, and they have particular privileges and responsibilities that do
not apply to the usual NCL procedures executed by product users.

MSGPROC Viewed as a System Level Procedure

Each OCS window can have a MSGPROC procedure associated with it. There is
only one MSGPROC per window and it has the ability to review and process
every message sent to its associated OCS window from any source, before the
messages are actually delivered to the window for display.

Just as LOGPROC is the only procedure in the system that can review the
messages flowing to the activity log, so an OCS window's MSGPROC is the only
NCL procedure that can review and process the message traffic flowing to that
OCS window.

In this respect a MSGPROC is classified as a system level procedure, even though
there can be many MSGPROC procedures active in a region on behalf of many
different OCS windows; MSGPROC has access to and control over a specific
message flow and has privileges not open to the usual NCL procedures executed
by users.

&INTREAD: Dependent Processing Environment

The last form of privileged access to traffic flow within a region occurs when
&INTCMD and &INTREAD statements are used to execute commands or other
NCL processes within an NCL dependent processing environment.

When a procedure executes an &INTCMD statement, command results are
returned to that procedure. These results are queued and can then be read back
by the original procedure through the &INTREAD statement.

Message Handling and Processing by System Level Procedures

Appendix B: System Level Procedures: Message Profiles 515

&INTREAD therefore provides privileged access to the flow of command result
messages produced by the various commands and NCL procedures that execute
within the original procedure's dependent processing environment.

&INTREAD is also able to access unsolicited messages, such as monitor
messages, for which the independent environment is profiled.

Message Handling and Processing by System Level Procedures

All system level procedures that have privileged access to a particular message
flow have the following capabilities:

■ They can read the next message from the traffic flow by using a privileged
NCL verb statement which provides access to the queue of messages. The
following verbs are used by specific system level procedures:

&LOGREAD

Used by the LOGPROC procedure to get a copy of the next message that
is to be written to the activity log.

&PPOREAD

Used by the PPOPROC procedure to get a copy of the next message
received from VTAM.

&MSGREAD

Used by a MSGPROC procedure to read the next message queued for
display on the OCS window with which the procedure is associated.

&INTREAD

Used by any NCL procedure to read the next request or response
queued to it via its dependent processing environment.

■ They can indicate what is to be done with the message that they have
received as a result of executing the 'read' statement. Typically, once a
message has been received, the procedure can indicate that the message is
to be processed normally (for example, &LOGCONT, &PPOCONT,
&MSGCONT), or deleted and not propagated any further (for example,
&LOGDEL, &MSGDEL), or replaced with an alternative message (for
example, &MSGREPL).

Decide What to Do with a Message

516 Network Control Language Programming Guide

Decide What to Do with a Message

While the system level procedures have verbs for accessing the message flow
that they are to monitor and verbs for indicating the course of action to be
taken with a message when it has been read, the procedures must also contain
the logic necessary to analyze the messages that are read to determine what
action is required.

The logic of these procedures is usually built on the concept of filtering the
message flow, searching for messages that are defined as being of interest
based on arguments such as message numbers or certain values that occur
within the message.

In addition to processing options based on message text content, messages can
also have a large number of other attributes that are not textual in nature. For
example, a message can have a color attribute that causes it to be displayed in
red when it is sent to a terminal.

Other messages can have the non-roll delete attribute, meaning that they will
not roll off an OCS window display until specifically deleted.

To assist with the logic necessary to process the text and non-text attributes of
each message, when a message is read by one of the system level procedure
verbs listed earlier a message profile is created for analysis and interrogation by
the procedure.

Message Profile

Appendix B: System Level Procedures: Message Profiles 517

Message Profile

The concept of the message profile is that all the attributes of a message should
be available as specific settings of a special group of system variables. The
profile variables can be tested for specific values to assist the procedure in
deciding whether special processing is needed for a message or whether the
message is of no importance to the procedure. Since testing variables for
specific values is easier than scanning text strings, examination of a message's
profile provides a simpler and more efficient method of message analysis.

All profile variables are available in Mapped Data Object (MDO) format for the
&INTREAD, &LOGREAD and &MSGREAD verbs. The object stem name for each
verb is unique, but they are all mapped by the same map, that is $MSG.

■ For &INTREAD the stem name is $INT.

■ For &LOGREAD the stem name is $LOG.

■ For &MSGREAD the stem name is $MSG.

The $MSG MDO can contain additional information that is not available in the
profile variables.

The $MSG map definition is part of the your product's distributed system and
can be reviewed from Mapping Services (option D.M from the Primary Menu).

Note: Most of the data components are optional.

Message Profile Variables

Following execution of any of the &INTREAD, &LOGREAD, &PPOREAD, or
&MSGREAD verbs, message profile variables are set to reflect the message
profile of the message read by the verb statement. The particular variables that
are set depend on the verb executed and on the class of message received.

This section describes the different values that can be set in the variables that
apply to the &INTREAD, &LOGREAD, and &MSGREAD verbs, and the conditions
under which each of the variables can be set. The individual variables that form
the message profiles of the message flows handled by the different verbs are
then cross-referenced against the individual verbs in the remaining sections.

Message Profile

518 Network Control Language Programming Guide

Note: System profile variables are available immediately after the &xxxREAD
statement is executed and are generally available until another NCL statement
is executed that alters the profile. System variables are valid only within the
scope of the procedure and their values are unpredictable when control is
passed to another procedure level. MDOs can be shared between called
procedures using SHRVARS and explicitly on the &return statement.

Following is a list of the complete set of message profile variables that apply to
these three verbs. Their MDO equivalents are included in brackets, where
relevant.

Note: stem can be $MSG, $INT or $LOG depending on which verb caused the
variable to be set.

&ZINTYPE

Specifies whether an &INTREAD operation has been satisfied by a request
message or a response message. Values are REQ (request message) or RESP
(response message) or NONE (no message).

&ZMALARM (stem.MSGATTR.ALARM)

Indicates whether the message will cause the terminal alarm to sound.
Value is YES or NO.

&ZMALLMSG

Indicates whether the message was generated by a MSG ALL command.
Value is YES or NO.

&ZMCOLOUR (stem.MSGATTR.DISPLAY.COLOUR)

Indicates the color attribute of the message. Value can be any one of NONE,
RED, BLUE, GREEN, YELLOW, TURQUOISE, PINK, or WHITE.

&ZMDOM

Indicates whether the message is a delete operator message instruction.
Value is YES or NO. This value is dependent also on the setting of the
&ZMTYPE variable.

&ZMDOMID (stem.DOMID)

Contains the delete operator message identifier (domid) of the message
read, if the message has the non-roll delete message attribute, as
determined by the setting of the &ZMNRD variable. If &ZMNRD=NO, this
variable is set to null.

Message Profile

Appendix B: System Level Procedures: Message Profiles 519

&ZMEVONID (stem.SOURCE.NCLID)

Is set when the incoming message was generated by an &EVENT verb and
contains the nclid of the procedure which issued the &EVENT.

&ZMEVPROF (stem.SOURCE.EVENTPROFILE)

Is set for incoming event messages (N00102) and represents the EDS profile
name which resulted in delivery of the event notification.

&ZMEVRCDE (stem.EVENT.ROUTECDE)

Contains the routecde of the incoming event message (N00102) if the
ROUTECDE operand was specified on the originating &EVENT verb.

&ZMEVTIME (stem.SOURCE.TIME.HHMMSSTTT)

Is set for incoming event messages (N00102) to the time the event
originated. Time is in the format HH.MM.SS.TTT.

&ZMEVUSER (stem.SOURCE.USER)

Is set when the incoming message was generated by an &EVENT verb and
contains the user ID of the user who issued the &EVENT verb. This variable
is also set for some system events and represents the user who was
responsible for the event generation.

&ZMFTSMSG

Indicates whether the message originated from File Transmission Services
(FTS). Value is YES or NO.

&ZMHLIGHT (stem.MSGATTR.DISPLAY.HLITE)

Indicates the display highlighting attributes of the message. Values are
NONE, USCORE, REVERSE, or BLINK.

&ZMINTENS (stem.MSGATTR.DISPLAY.INTENS)

Indicates the display intensity attribute of the message. Values are HIGH or
LOW or null if no message is being processed.

&ZMLNODE (stem.SOURCE.REGION)

Indicates the terminal name of the user to whom a log message is to be
attributed. Value is the name of a terminal. (This is available to &LOGREAD
only.)

&ZMLOGCMD

Indicates whether a log message is an echo to the log of a command. Value
is YES or NO. (This is available to &LOGREAD only.)

Message Profile

520 Network Control Language Programming Guide

&ZMLSRCID (stem.PREFIX.LASTMSGID.ID)

Contains the message prefix of the last handler of the message just
received.

&ZMLSRCTP (stem.PREFIX.LASTMSGID.TYPE)

Indicates the type of the last handler of the message just received. Values
can be:

null

If the message was generated within this system.

ROF

If the message was delivered across a ROF session.

MAIOC

If the message was delivered across an MAI OC session.

&ZMLTIME

Contains the timestamp of a log message. (This is available to &LOGREAD
only.) Time is in the format HH.MM.SS.TTT.

&ZMLUSER (stem.SOURCE.USER)

Contains the user ID to whom generation of the log message is to be
attributed. (This is available to &LOGREAD only.)

&ZMAPNAME (stem.MAPNAME)

Contains the mapname of the object in $MSG.USERMDO for the current
message (if present).

&ZMMONMSG

Indicates whether the message received is a monitor class message. Values
are YES or NO.

&ZMMSG

Indicates whether the message received is a standard message or not. The
setting of this variable is always opposite to the setting of the &ZMDOM
variable and is dependent on the setting of the &ZMTYPE variable.

&ZMMSGCD (stem.MSGATTR.MSGCODE)

Indicates the (hexadecimal) message code attribute of this message. Value
can be 00-FF. The message code dictates which user IDs are eligible to
receive the message.

Message Profile

Appendix B: System Level Procedures: Message Profiles 521

&ZMNMDIDL (stem.SOURCE.LAST.DOMAIN)

The domain ID of the last region to handle this message. This can be the
same as the originating system, or different if the message was originated
by a remote system and then routed onwards by an intermediate system.

&ZMNMDIDO (stem.SOURCE.ORIG.DOMAIN)

The domain ID of the region from which this message originated. If sourced
from the local system it will contain the local system's domain ID. If sourced
from a remote system this variable carries the domain ID of the originating
system even though the message might have been routed onwards by
intermediate systems.

&ZMNRD

Indicates whether the message carries the non-roll delete attribute. Values
can be:

NO

Not a non-roll delete message.

YES

Message is non-roll delete and can be deleted only by a delete operator
message (DOM) instruction.

OPER

If the message is non-roll delete but is deleted only by the cursor delete
function from an OCS window.

&ZMNRDRET

Indicates whether the message has been received as a result of a NRDRET
command being issued by the user. This allows an NCL procedure to detect
redisplayed messages and ignore them for event analysis purposes. Value is
YES or NO.

&ZMOSRCID (stem.PREFIX.ORIGMSGID.ID)

Contains the message prefix of the originator of the message just received.

Message Profile

522 Network Control Language Programming Guide

&ZMOSRCTP (stem.PREFIX.ORIGMSGID.TYPE)

Indicates the type of the originator of the message just received. Values can
be:

null

If the message was generated within this system.

ROF

If the message was delivered across a ROF session.

MAIOC

If the message was delivered across an MAI OC session.

&ZMPPODTA

Indicates whether any PPO message profile information is available
concerning this message. Value is YES or NO. If YES, then other message
profile variables are available containing information relating to certain PPO
attributes of the message.

&ZMPPOMSG

Indicates whether the message originated from PPO. Value is YES or NO.

&ZMPPOSEV (stem.MSGATTR.SEVERITY)

If &ZMPPODTA = YES, then the severity level of the PPO message is available
in this variable. Value can be U (undeliverable), I (information), W
(Important!), N (normal), or S (severe).

&ZMPPOTM (stem.SOURCE.TIME.HHMMSSTTT)

If &ZMPPODTA = YES, this variable contains the time that the message
originated. Time is in the format HH.MM.SS.TTT.

&ZMPPOVNO (stem.PPOCNTL.VTAMNUM)

If &ZMPPODTA = YES, this variable contains the VTAM message number of
the PPO message.

&ZMPREFXD

Indicates whether the message text has been prefixed with identifier values,
for example MAI OC session identifier or ROF message prefix. Values are YES
or NO.

&ZMPTEXT

Is set to the entire message text, prefixed with any ROF or MAI OC session
identifiers according to the current profile settings, as it will appear on the
OCS window if the message is allowed to flow to the window unchanged.

Message Profile

Appendix B: System Level Procedures: Message Profiles 523

&ZMREQID

If &ZINTYPE=REQ (&INTREAD satisfied by a request message), this variable is
set to the user ID of the user that issued the INTQUE command that
generated the message, or to the NCL ID of the NCL process that issued the
INTQUE command or the &WRITE statement. This variable is dependent on
&ZINTYPE for relevance, and its setting is categorized by the &ZMREQSRC
variable which will also be set. (This is available to &INTREAD only.)

&ZMREQSRC

If &ZINTYPE=REQ (&INTREAD satisfied by a request message), this variable
indicates whether the process that generated the message was a user,
another NCL process or a system notification. Values are USER, NCL or
SYSTEM respectively. (This is available to &INTREAD only.)

&ZMSOLIC

Indicates whether the message was solicited or unsolicited. A solicited
message is usually a command response. Values are YES (solicited) or NO.

&ZMSOURCE

Indicates the verb that last set the values of the message profile variables.
The suite of message profile variables remain set until changed by the
execution of another verb that modifies the suite. Values are:

■ INTREAD

■ LOGREAD

■ MSGREAD

&INTREAD Message Profile

524 Network Control Language Programming Guide

&ZMTEXT (stem.TEXT)

■ Contains the text of the message received. Values are:

■ Message text if the message is a standard text message

■ Request message (that is, if &ZMTYPE=MSG or REQ)

■ Null if the message is a delete operator message instruction (DOM)

After &LOGREAD, this variable does not include the standard log message
heading information of user ID, time, and terminal name. These values are
available from other message profile variables that are set after &LOGREAD.

&ZMTYPE

Specifies the type of message received after execution of the read verb.
Values are:

MSG

The message is a standard text message.

DOM

The message is a delete operator message instruction.

REQ

The message is a request message that has satisfied &INTREAD
TYPE=ANY or TYPE=REQ.

&INTREAD Message Profile

The message profile variables set following &INTREAD are as follows. Depending
on the setting of certain key variables, some profile variables can be null.

&ZINTYPE

Specifies whether an &INTREAD operation has been satisfied by a request
message or a response message. Values are REQ (request message) or RESP
(response message) or NONE (no message).

&ZMALARM

Indicates whether the message will cause the terminal alarm to sound.
Value is YES or NO, or null if &ZINTYPE=REQ.

&ZMALLMSG

Indicates whether the message was generated by a MSG ALL command.
Value is YES or NO, or null if &ZINTYPE=REQ.

&INTREAD Message Profile

Appendix B: System Level Procedures: Message Profiles 525

&ZMCOLOUR

Indicates the color attribute of the message. Value can be any one of NONE,
RED, BLUE, GREEN, YELLOW, TURQUOISE, PINK, or WHITE. This attribute is
null if &ZINTYPE=REQ.

&ZMDOM

Indicates whether the message is a delete operator message instruction.
Value is YES or NO. This value is dependent also on the setting of the
&ZMTYPE variable.

&ZMDOMID

Contains the delete operator message identifier (domid) of the message
read, if the message has the non-roll delete message attribute, as
determined by the setting of the &ZMNRD variable. If &ZMNRD=NO or
&ZINTYPE=REQ, this variable is set to null.

&ZMEVONID

Is set when the incoming message was generated by an &EVENT verb and
contains the nclid of the procedure which issued the &EVENT.

&ZMEVPROF

Is set for incoming event messages (N00102) and represents the EDS profile
name which resulted in delivery of the event notification.

&ZMEVRCDE

Contains the routecde of the incoming event message (N00102), if the
ROUTECDE operand was specified on the originating &EVENT verb.

&ZMEVTIME

Is set for incoming event messages (N00102) to the time the event
originated. Time is in the format HH.MM.SS.TTT.

&ZMEVUSER

Is set when the incoming message was generated by an &EVENT verb and
contains the userid of the user who issued the &EVENT verb. This variable is
also set for some system events and represents the user who was
responsible for the event generation.

&ZMFTSMSG

Indicates whether the message originated from the File Transmission
Services (FTS) optional feature. Value is YES or NO, or null if &ZINTYPE=REQ.

&INTREAD Message Profile

526 Network Control Language Programming Guide

&ZMHLIGHT

Indicates the display highlighting attributes of the message. Values are
NONE, USCORE, REVERSE, or BLINK. This attribute is null if &ZINTYPE=REQ.

&ZMINTENS

Indicates the display intensity attribute of the message. Values are HIGH or
LOW or null if no message being processed. This attribute is null if
&ZINTYPE=REQ.

&ZMLNODE

Always null.

&ZMLOGCMD

Always null.

&ZMLSRCID

Contains the message prefix of the last handler of the message just
received.

&ZMLSRCTP

Indicates the type of the last handler of the message just received. Values
can be:

Null

If the message was generated within this system.

ROF

If the message was delivered across a ROF session.

MAIOC

If the message was delivered across an MAI OC session.

This attribute is null if &ZINTYPE=REQ.

&ZMLTIME

Always null.

&ZMLUSER

Always null.

&ZMAPNAME

Contains the mapname of the object in $MSG.USERMDO for the current
message (if present).

&INTREAD Message Profile

Appendix B: System Level Procedures: Message Profiles 527

&ZMMONMSG

Indicates whether the message received is a monitor class message. Values
are YES or NO. This attribute is null if &ZINTYPE=REQ.

&ZMMSG

Indicates whether the message received is a standard message or not. The
setting of this variable is always opposite to the setting of the &ZMDOM
variable and is dependent on the setting of the &ZMTYPE variable. This
attribute is null if &ZINTYPE=REQ.

&ZMNRD

Indicates whether the message carries the non-roll delete attribute. Values
can be:

NO

Not a non-roll delete message.

YES

Message is non-roll delete and can be deleted only by a delete operator
message (DOM) instruction.

OPER

If the message is non-roll delete but is deleted only by the cursor delete
function from an OCS window.

&ZMOSRCID

Contains the message prefix of the originator of the message just received.
Will be null if &ZINTYPE=REQ.

&ZMOSRCTP

Indicates the type of the originator of the message just received. Values can
be:

Null

If the message was generated within this system.

ROF

If the message was delivered across a ROF session.

MAIOC

If the message was delivered across an MAI OC session.

This attribute is null if &ZINTYPE=REQ.

&INTREAD Message Profile

528 Network Control Language Programming Guide

&ZMPREFXD

Indicates whether the message text has been prefixed with identifier values,
for example MAI OC session identifier or ROF message prefix. Values are YES
or NO. This attribute is null if &ZINTYPE=REQ.

&ZMPTEXT

Is set to the entire message text, prefixed with any ROF or MAI OC session
identifiers according to the current profile settings, as it will appear on the
OCS window if the message is allowed to flow to the window unchanged.
Will be null if &ZINTYPE=REQ.

&ZMREQID

If &ZINTYPE=REQ (&INTREAD satisfied by a request message), this variable is
set to the user ID of the user that issued the INTQUE command that
generated the request message, or to the NCL ID of the NCL process that
issued the INTQUE command. This variable is dependent on &ZINTYPE for
relevance, and its setting is categorized by the &ZMREQSRC variable which
will also be set. (This is available to &INTREAD only.)

This attribute is null if &ZINTYPE=RESP.

&ZMREQSRC

If &ZINTYPE=REQ (&INTREAD satisfied by a request message), this variable
indicates whether the source of the INTQUE command that generated the
message was a user or another NCL process. Values are USER or NCL
respectively. (This is available to &INTREAD only.)

This attribute is null if &ZINTYPE=RESP.

&ZMSOLIC

Indicates whether the message was solicited or unsolicited. A solicited
message is usually a command response. Values are YES (solicited) or NO.
This attribute is null if &ZINTYPE=REQ.

&ZMSOURCE

Indicates the verb that last set the values of the message profile variables. It
will always be INTREAD for the &INTREAD message profile. The suite of
message profile variables remain set until changed by the execution of
another verb that modifies the suite.

&ZMTEXT

Contains the text of the message received. This attribute is null if
&ZMTYPE=DOM.

&LOGREAD Message Profile

Appendix B: System Level Procedures: Message Profiles 529

&ZMTYPE

Specifies the type of message received after execution of the read verb.
Values are:

MSG

The message is a standard text message.

DOM

The message is a delete operator message instruction.

REQ

The message is a request message that has satisfied &INTREAD
TYPE=ANY or TYPE=REQ.

&LOGREAD Message Profile

The message profile variables set following &LOGREAD are as follows.
Depending on the setting of certain key variables, some profile variables can be
null.

&ZMALARM

Indicates whether the message will cause the terminal alarm to sound.
Value is YES or NO.

&ZMALLMSG

Indicates whether the message was generated by a MSG ALL command.
Value is YES or NO.

&ZMCOLOUR

Indicates the color attribute of the message. Value can be any one of NONE,
RED, BLUE, GREEN, YELLOW, TURQUOISE, PINK, or WHITE.

&ZMDOM

Value is always NO.

&ZMDOMID

Contains the delete operator message identifier (domid) of the message
read, if the message has the non-roll delete message attribute, as
determined by the setting of the &ZMNRD variable. If &ZMNRD=NO, this
variable is set to null.

&LOGREAD Message Profile

530 Network Control Language Programming Guide

&ZMFTSMSG

Indicates whether the message originated from the File Transmission
Services (FTS) optional feature. Value is YES or NO.

&ZMHLIGHT

Indicates the display highlighting attributes of the message. Values are
NONE, USCORE, REVERSE, or BLINK.

&ZMINTENS

Indicates the display intensity attribute of the message. Values are HIGH or
LOW or null if no message being processed.

&ZMLNODE

Indicates the terminal name of the user to whom a log message is to be
attributed. Value is the name of a terminal. (This is available to &LOGREAD
only.)

&ZMLOGCMD

Indicates whether a log message is an echo to the log of a command. Value
is YES or NO. (This is available to &LOGREAD only.)

&ZMLSRCID

Contains the message prefix of the last handler of the message just
received.

&ZMLSRCTP

Indicates the type of the last handler of the message just received. Values
can be:

Null

If the message was generated within this system.

ROF

If the message was delivered across a ROF session.

MAIOC

If the message was delivered across an MAI OC session.

&ZMLTIME

Contains the timestamp of a log message. Time is in the format
HH.MM.SS.TTT.

&LOGREAD Message Profile

Appendix B: System Level Procedures: Message Profiles 531

&ZMLUSER

Contains the user ID to whom generation of the log message is to be
attributed.

&ZMAPNAME

Contains the mapname of the object in $MSG.USERMDO for the current
message (if present).

&ZMMONMSG

Indicates whether the message received is a monitor class message. Values
are YES or NO.

&ZMMSG

Value is always YES.

&ZMNRD

Indicates whether the message carries the non-roll delete attribute. Values
can be:

NO

Not a non-roll delete message.

YES

Message is non-roll delete and can be deleted only by a delete operator
message (DOM) instruction.

OPER

If the message is non-roll delete but is deleted only by the cursor delete
function from an OCS window.

&ZMOSRCID

Contains the message prefix of the originator of the message just received.

&ZMOSRCTP

V the type of the originator of the message just received. Values can be:

Null

If the message was generated within this system.

ROF

If the message was delivered across a ROF session.

MAIOC

If the message was delivered across an MAI OC session.

&LOGREAD Message Profile

532 Network Control Language Programming Guide

&ZMPREFXD

Indicates whether the message text has been prefixed with identifier values,
for example MAI OC session identifier or ROF message prefix. Values are YES
or NO.

&ZMPTEXT

Value is always null.

&ZMREQID

Value is always null.

&ZMREQSRC

Value is always null.

&ZMSOLIC

Indicates whether the message was solicited or unsolicited. A solicited
message is usually a command response. Values are YES (solicited) or NO.

&ZMSOURCE

Indicates the verb that last set the values of the message profile variables.
This will always be LOGREAD for the &LOGREAD message profile. The suite
of message profile variables remain set until changed by the execution of
another verb that modifies the suite.

&ZMTEXT

Contains the text of the message received.

After &LOGREAD, this variable does not include the standard log message
heading information of user ID, time, and terminal name. These values are
available from other message profile variables that are set after &LOGREAD.

&ZMTYPE

Value is always MSG.

&MSGREAD Message Profile

Appendix B: System Level Procedures: Message Profiles 533

&MSGREAD Message Profile

The message profile variables set following &MSGREAD are as follows.
Depending on the setting of certain key variables, some profile variables can be
null.

&ZMALARM

Indicates terminal alarm. Values are YES or NO.

&ZMALLMSG

Indicates whether the message was generated by a MSG ALL command.
Value is YES or NO, or null if &ZMTYPE=DOM.

&ZMCOLOUR

Indicates the color attribute of the message. Value can be any one of NONE,
RED, BLUE, GREEN, YELLOW, TURQUOISE, PINK, or WHITE. This attribute is
null if &ZMTYPE=DOM.

&ZMDOM

If &ZMTYPE=DOM, value is DOM; otherwise, it is NO.

&ZMDOMID

Contains the delete operator message identifier (domid) of the message
read, if the message has the non-roll delete message attribute, as
determined by the setting of the &ZMNRD variable. If &ZMNRD=NO, this
variable is set to null.

&ZMFTSMSG

Indicates whether the message originated from the File Transmission
Services (FTS) optional feature. Value is YES or NO. This attribute is null if
&ZMTYPE=DOM.

&ZMHLIGHT

Indicates the display highlighting attributes of the message. Values are
NONE, USCORE, REVERSE, or BLINK. This attribute is null if &ZMTYPE=DOM.

&ZMINTENS

Indicates the display intensity attribute of the message. Values are HIGH or
LOW or null if no message being processed. This attribute is null if
&ZMTYPE=DOM.

&ZMLOGCMD

Value is always null.

&MSGREAD Message Profile

534 Network Control Language Programming Guide

&ZMLNODE

Value is always null.

&ZMLSRCID

Contains the message prefix of the last handler of the message just
received. Values can be:

Null

Message generated internally by this system.

ROF msgid

Message prefix of the ROF session which delivered the message.

MAIOC sessionid

The session ID of the MAI OC session that delivered the message.

This attribute is null if &ZMTYPE=DOM.

&ZMLSRCTP

Indicates the type of the last handler of the message just received. Values
can be:

Null

If the message was generated within this system.

ROF

If the message was delivered across a ROF session.

MAIOC

If the message was delivered across an MAI OC session.

This attribute is null if &ZMTYPE=DOM.

&ZMLTIME

Value is always null.

&ZMLUSER

Value is always null.

&ZMAPNAME

Contains the mapname of the object in $MSG.USERMDO for the current
message (if present).

&MSGREAD Message Profile

Appendix B: System Level Procedures: Message Profiles 535

&ZMMONMSG

Indicates whether the message received is a monitor class message. Values
are YES or NO.

&ZMMSG

Value is YES or NO.

&ZMNRD

Indicates whether the message carries the non-roll delete attribute. Values
can be:

NO

Not a non-roll delete message.

YES

Message is non-roll delete and can be deleted only by a delete operator
message (DOM) instruction.

OPER

If the message is non-roll delete but is deleted only by the cursor delete
function from an OCS window.

&ZMOSRCID

Contains the message prefix of the originator of the message just received.
Will be null if &ZMTYPE=DOM.

&ZMOSRCTP

Indicates the type of the originator of the message just received. Values can
be:

Null

If the message was generated within this system.

ROF

If the message was delivered across a ROF session.

MAIOC

If the message was delivered across an MAI OC session.

This attribute is null if &ZMTYPE=DOM.

&ZMPREFXD

Indicates whether the message text has been prefixed with identifier values,
for example MAI OC session identifier or ROF message prefix. Values are YES
or NO. This attribute is null if &ZMTYPE=DOM.

&MSGREAD Message Profile

536 Network Control Language Programming Guide

&ZMPTEXT

Is set to the entire message text, prefixed with any ROF or MAI OC session
identifiers according to the current profile settings, as it will appear on the
OCS window if the message is allowed to flow to the window unchanged.
This attribute is null if &ZMTYPE=DOM.

&ZMREQID

Value is always null.

&ZMREQSRC

Value is always null.

&ZMSOLIC

Indicates whether the message was solicited or unsolicited. A solicited
message is usually a command response. Values are YES (solicited) or NO.
This attribute is null if &ZMTYPE=DOM.

&ZMSOURCE

Indicates the verb that last set the values of the message profile variables.
This will always be MSGREAD for the &MSGREAD message profile. The suite
of message profile variables remain set until changed by the execution of
another verb that modifies the suite.

&ZMTEXT

If &ZMTYPE=MSG, &ZMTEXT contains the entire message text. If
&ZMTYPE=DOM, then &ZMTEXT is null.

&ZMTYPE

Specifies the type of message received after execution of the read verb.
Values are:

MSG

The message is a standard text message.

DOM

The message is a delete operator message instruction.

REQ

The message is a request message that has satisfied &INTREAD
TYPE=ANY or TYPE=REQ.

The value DOM is possible only if DOM=YES is coded on the &MSGREAD
statement.

&PPOREAD Message Profile

Appendix B: System Level Procedures: Message Profiles 537

&PPOREAD Message Profile

The message profile variables set following &PPOREAD are private to the
PPOPROC system procedure, and are different from the variables that form the
message profile for the &INTREAD, &LOGREAD and &MSGREAD verbs.

&PPOALERT

Value is YES if this message was routed to PPOPROC as a result of a
&PPOALERT verb. &PPOALERT can be used to send messages to PPOPROC
either locally or in remote systems. If the message was not originated by a
&PPOALERT then value is NO.

&PPOCOLOR

Value is set according to the SYSPARMS PPOCOLOR= operand.

&PPODEFM

Value is YES if the message number has been defined by the DEFMSG
command for delivery to PPOPROC. This variable can be set to NO if delivery
for the UNSOLICITED class of messages PPOPROC delivery IS set but specific
delivery for this message number is NOT.

&PPODOMID

The delete operator message identifier (DOMID) of the message if the PPO
message is non-roll delete. Value is DOMID if &PPONRD = YES; otherwise,
this variable is set to null value.

&PPODLOC

Value is YES if the message number is one that has been defined through
the DEFMSG command for LOCAL delivery. Value is NO if message has not
been defined for delivery to local receivers.

&PPODREM

Value is YES if the message number is one that has been defined through
the DEFMSG command for REMOTE delivery. Value is NO if message has not
been defined for delivery to remote receivers.

&PPOFIRST

Indicates the first message from a possible multi-line message block
delivered to PPOPROC. The purpose of this variable is to indicate a new
VTAM message group but not necessarily the first message of the group
delivered by VTAM as these might not be eligible for delivery to PPOPROC.

&PPOHLITE

Value is set according to the SYSPARMS PPOHLITE= operand.

&PPOREAD Message Profile

538 Network Control Language Programming Guide

&PPOLDID

Domain ID of the last region to handle this PPO message. If generated by
the local system, this variable will contain the domain ID of the local system.
The value can be different from the originating domain ID if the message
was onward routed by an intermediate system.

&PPOMSGNO

The VTAM message number of the PPO message just received. Note that
this value is also available in the &ZMPPOVNO message profile variable
following a &INTREAD, &LOGREAD, or &MSGREAD operation.

&PPOMSGSV

The VTAM message severity level associated with the PPO message just
received. Value can be U (undeliverable), I (information), W (Important!), N
(normal), or S (severe).

Note that the value is also available in the &ZMPPOSEV message profile
variable following a &INTREAD, &LOGREAD, or &MSGREAD operation.

&PPONRD

Value is YES if the PPO message has the non-roll delete attribute (which
occurs if a reply is required to the message). Otherwise, value is NO.

&PPOODID

The domain ID of the region from which the PPO message originated.

&PPOONETN

The network name of the VTAM that generated the PPO message.

&PPOONMID

The region ID (from the SYSPARMS ID= operand) of the system that
generated the message.

&PPOPRIRN

If the PPO message contains qualified network resource names this is the
primary NETWORK name.

Your product analyzes message text based on VTAM tables to extract
resource names. This extraction does not necessarily reflect SNA class
resources, and can vary with the version of VTAM.

CA recommends that resource extraction be performed at message level by
PPOPROC, as the extracted values might not reflect the true resource
hierarchy in the VTAM multi-line messages.

&PPOREAD Message Profile

Appendix B: System Level Procedures: Message Profiles 539

&PPOPRIRS

If the PPO message contains network resource names this is the primary
resource name. In the context of PPOPROC, this is the resource name of the
first message in a VTAM multi-line display.

Your product analyzes message text based on VTAM tables to extract
resource names. This extraction does not necessarily reflect SNA class
resources, and can vary with the version of VTAM.

CA recommends that resource extraction be performed at message level by
PPOPROC, as the extracted values might not reflect the true resource
hierarchy in the VTAM multi-line messages.

&PPOSECRS

If the PPO message contains network resource names this is the secondary
resource name. If the message is part of a VTAM multi-line message, this is
the first resource name in the current message.

&PPOSECRN

If the PPO message contains qualified network resource names, this is the
secondary NETWORK name.

&PPOOSSCP

The SSCP name of the VTAM that generated the PPO message.

&PPOTEXT

The PPO message text.

&PPOTIME

The PPO message generation time in HH.MM.SS.TTT format. For messages
delivered across an ISR link it reflects time from the remote system
converted to the time on the local system.

&PPOTYPE

Defines the type of PPO message received. Value is PPO if the message is a
standard unsolicited message delivered from VTAM, SPO if the message is
actually the reply to a command issued by an OCS operator or NCL
procedure or CMD if the message is a copy of a command entered by an
OCS operator or NCL procedure.

&PPOREAD Message Profile

540 Network Control Language Programming Guide

&PPOUID

The user ID associated with a message or command which has
&PPOTYPE = CMD or &PPOTYPE = SPO, or for which &PPOALRT = YES.

&PPOVMSG

Indicates (YES or NO) whether a message was found as a VTAM message in
the DEFMSG table.

Appendix C: Sample APPC Conversations 541

Appendix C: Sample APPC Conversations

This section contains the following topics:

Sample Conversations Between Two Systems (see page 541)
Run the Sample APPC Conversations (see page 542)

Sample Conversations Between Two Systems

The purpose of the sample APPC conversations is to illustrate the use of the
&APPC NCL verb. The samples are provided in the distribution library. A
complete list of sample conversations and detailed instructions on how to run
them are also given in the member $SAAPDOC.

Source and Target NCL Procedures

When two NCL procedures communicate using an APPC connection, the one
requesting the connection (via the &APPC ALLOCATE verb) is called the source
procedure. As a result of the allocation request, a target procedure is started or
attached in the remote system. All the sample conversations involve a source
and a target procedure pair.

To allocate a conversation, the source procedure issues an &APPC ALLOCATE
verb specifying the appropriate transaction identifier. In the sample
conversations, source and target NCL procedure pairs are denoted by $SAAPSxx
and $SAAPTxx respectively and the associated transaction identifier by
$SATRNxx.

Run the Sample APPC Conversations

542 Network Control Language Programming Guide

Run the Sample APPC Conversations

To run the sample APPC conversations, choose one or more of the transactions
available ($SATRNxx) and one of the following environments. The sample
conversations are assumed to run between a source system (NMA) and a target
(NMB). If you want to run the samples, you should replace these by the LU
names of your particular systems.

Running the APPC samples involves the following steps:

■ APPC environment definitions. This involves defining transactions and APPC
links to both the source and the target systems. Examples of three different
environments are provided.

■ Running the APPC transactions. This involves starting the source procedure
$SAAPSxx in the source system NMA. Information about the completion of
&APPC verbs (from &RETCODE and &ZFDBK), the 'what-received' indicator
(from &ZAPPCWR) and the state of the conversation (from &ZAPPCSTA) is
reported in messages written to the system log. A description of the first
three sample conversations is given.

Environment 1: Local Conversations

This environment involves only one system. Both the source procedure
$SAAPSxx and the target procedure $SAAPTxx run in the same system and the
same NCL region. Since no LU6.2 sessions are established no link definitions are
necessary. Environments 1 and 2 are the simplest in which to run the sample
conversations and require only transaction definitions, as follows:

DEFTRANS TRANSID=$SATRNxx PROC=$SAAPTxx

The default destination information for the transaction is omitted, causing the
ENV=CURRENT parameter to be assumed, which indicates that $SAAPTxx is to
be started in the same system and the same NCL region as the source
procedure.

Run the Sample APPC Conversations

Appendix C: Sample APPC Conversations 543

Environment 2: Same LU Conversations

This environment involves only one system. Both the source procedure
$SAAPSxx and the target procedure $SAAPTxx run in the same system. In this
case, however, the target procedure is started in the background server
environment, BSVR. As no LU6.2 sessions are established, no link definitions are
necessary. Environments 1 and 2 are the simplest in which to run the sample
conversations and require only transaction definitions, as follows:

DEFTRANS TRANSID=$SATRNxxLU=NMA PROC=$SAAPTxx

The operand LU=NMA indicates that $SAAPTxxis to be started in the same
system as the source procedure.

Environment 3: Conversations Between Two Systems

In this environment, the source procedure, $SAAPSxx, is started in NMA and the
target procedure, $SAAPTxx, is started in NMB. A single session APPC link is
established between NMA and NMB and both link and transaction definitions
are needed.

Definitions in the source system NMA:

DEFTRANS TRANSID=$SATRNxx LINK=NMB

DEFLINK TYPE=APPC LINK=NMB LU=NMB MON=YES

Definitions in the target system NMB:

DEFTRANS TRANSID=$SATRNxx PROC=$SAAPTxx

DEFLINK TYPE=APPC LINK=NMA LU=NMA

Appendix D: NDB Response Codes 545

Appendix D: NDB Response Codes

This section contains the following topics:

About Response Codes (see page 545)
Error Information (see page 545)
Response Codes (see page 546)

About Response Codes

The response codes fall into three categories:

■ All OK (response 0)

■ Warning conditions (1 to 29)

■ Error conditions (30 to 255)

An NCL procedure terminates if an error response is returned, unless &NDBCTL
ERROR=CONTINUE is in effect, except as follows:

■ &NDBOPEN is always processed as if &NDBCTL ERROR=CONTINUE is in
effect, except for response 34 (already open), which honors the actual
setting of &NDBCTL ERROR.

■ &NDBCLOSE is always processed as if &NDBCTL ERROR=CONTINUE is in
effect, except for response 35 (not open), which honors the actual setting of
&NDBCTL ERROR.

These exceptions allow a procedure to recover from any error conditions
encountered when opening or closing an NDB, except for the obvious
programming error (already open or closed). This should encourage you to
develop exception handling logic when first writing a procedure.

If an error response from an &NDBOPEN is ignored, the next &NDB statement
referring to that NDB will cause the procedure to abnormally terminate (as a
result of trying to access an NDB that has not been opened).

Error Information

Each response code description includes an indication of the information that
will be provided in the &NDBERRI system variable. N/A means there is no
information provided, and &NDBERRI is null.

Response Codes

546 Network Control Language Programming Guide

Response Codes

The response codes are listed in ascending order:

0

ERRI=N/A

Database processing completed with no errors.

1

ERRI=N/A

Record with requested key or RID not found (GET/UPD/DEL), OR reposition
RID not in scan result list (SEQ RESET).

2

ERRI=N/A

End of file on GET sequential (forward or backward).

3

ERRI=field name

Named field not found for INFO on field name.

4

ERRI=N/A

No records found for supplied SCAN criteria.

5

ERRI=N/A

SCAN terminated-exceeded I/O limit.

6

ERRI=N/A

SCAN terminated-exceeded time limit.

7

ERRI=N/A

SCAN terminated-exceeded storage limit.

8

ERRI=N/A

SCAN terminated-met or exceeded number of records limit.

Response Codes

Appendix D: NDB Response Codes 547

10-19

ERRI=N/A

Linked &NDBGET/&NDBFMT-extra no find return code as used in the link
definition.

20

ERRI=format name

FMT del, format name not found.

21

ERRI=sequence name

SEQ del, sequence not found.

29

ERRI=N/A

Maximum possible Important! code-currently not assigned.

30

ERRI=N/A

Error in request (catch-all). See command/messages.

31

ERRI=N/A

Logic error in request: not signed on to database (NDB). For example, if the
NCL procedure is paused and the database stopped/started, then the next
call gets this error.

32

ERRI=N/A

Insufficient storage to process request.

33

ERRI=N/A

OPEN request rejected, database is stopping.

34

ERRI=N/A

&NDBOPEN-already open to this NDB.

Response Codes

548 Network Control Language Programming Guide

35

ERRI=N/A

&NDBCLOSE-not open to this NDB.

36

ERRI=N/A

NDB PURGE-nominated NDB not found, could not purge.

37

ERRI=N/A

NDB PURGE-nominated NDB not locked, cannot purge.

38

ERRI=N/A

Load for load module for requested NDB function failed.

39

ERRI=N/A

Requested option not allowed-NDB is in load mode.

40

ERRI=N/A

&NDBOPEN failed by NCLEX01 user exit.

41

ERRI=N/A

This &NDB... verb blocked by &NDBOPEN user exit (NCLEX01) return mask.

51

ERRI=N/A

Database open failure: VFS open for database failed.

Possible causes:

■ File not allocated to your product.

■ UDBCTL OPEN not done or in error.

52

ERRI=N/A

Database open failure: Specified database name is not a VSAM KSDS.

Response Codes

Appendix D: NDB Response Codes 549

53

ERRI=N/A

Database open failure: VSAM relative key position (RKP) not 0.

54

ERRI=N/A

Database open failure: VSAM key length too short (that is, fewer than 16) to
be a valid NDB database.

55

ERRI=N/A

Database open failure: VSAM data length too short to be a valid NDB
database.

56

ERRI=N/A

Database open failure: Read of control record failed.

57

ERRI=N/A

Database open failure: Control record not valid.

58

ERRI=N/A

Database open failure: Unable to get storage to contain control record.

59

ERRI=N/A

Database open failure: Read of transaction control record failed.

60

ERRI=N/A

Database open failure: Transaction control record not valid.

61

ERRI=N/A

Database open failure: Unable to get storage to contain transaction control
record.

Response Codes

550 Network Control Language Programming Guide

62

ERRI=N/A

Database open failure: Unable to get storage to contain transaction data
record.

63

ERRI=N/A

Database open failure: Error building field name indexes.

64

ERRI=N/A

Database open failure: Error re-applying pending transaction. Probable file
full condition.

65

ERRI=N/A

Database open failure: Database flagged as in DEFER status. Probable file
corrupt condition, system has failed with database started in DEFER mode.

66

ERRI=N/A

Database open failure: UDB is open by other users.

67

ERRI=N/A

UDB is open INPUT and NDB START or &NDBOPEN is not for INPUT only
mode.

68

ERRI=N/A

Domain ID on NDB control record and this system mismatch, and FORCE not
on NDB START. NDB is not started. Important!-it might be currently open in
another system.

69

ERRI=N/A

NDB version in this NDB control record not supported.

Response Codes

Appendix D: NDB Response Codes 551

70

ERRI=N/A

This NDB is open under another file ID on this system (VSAM timestamp
match).

71

ERRI=N/A

Request not allowed on active database. For example, NDB CREATE, NDB
RESET, NDB ALTER, or NDB UNLOAD.

72

ERRI=N/A

User ID required for request. Internal failure, should never occur with NDB
command.

73

ERRI=sequence name

Specified sequence name not defined.

74

ERRI=sequence name

Sequence name required or already defined.

75

ERRI=N/A

Free-format text had an invalid token:

■ Too long

■ Unmatched quotes

76

ERRI=N/A

Logic error-not signed on to database (NDB). For example, if NCL proc is
paused, and DB stopped/started, then next call will get this error.

77

ERRI=N/A

This user ID has an asynchronous request running. Internal failure; should
never occur with NDB command or &NDB statements.

Response Codes

552 Network Control Language Programming Guide

78

ERRI=N/A

Request internally canceled.

79

ERRI=N/A

OPEN EXCLUSIVE-other users on database.

80

ERRI=N/A

OPEN-database locked by an exclusive user.

81

ERRI=field name if relevant

Add, update, or delete field, an error in the field list syntax, and so on.

82

ERRI=N/A

Add, update, or delete field, an internal error in the field index.

83

ERRI=field name

Value for named field is bad, not recognizable as valid data.

84

ERRI=field name

Value for named field is too long.

85

ERRI=field name

Value for named numeric field is not numeric, or outside range:

-2,147,483,648 : 2,147,483,647.

86

ERRI=field name

Value for named hexadecimal field is not a valid hexadecimal string, or is an
odd number of characters.

Response Codes

Appendix D: NDB Response Codes 553

87

ERRI=field name

Value for named DATE or CDATE field is not valid.

88

ERRI=field name

Field name is not a valid floating point number.

89

ERRI=field name

Supplied value is not a valid hexadecimal number.

90

ERRI=field name

Value for named time field is not a valid time, in the format:

HHMMSS or HHMMSS.TTTTTT.

92

ERRI=N/A

Operation not allowed. NDB or user open in input-only mode.

93

ERRI=field name

Field update request-could not read field record from NDB.

94

ERRI=field name

Supplied value is not a valid timestamp, in the format:

YYYYMMDDHHMMSS.TTTTTT.

101

ERRI=token in error

ADD or UPD, field=value list syntax error.

102

ERRI=field name

ADD or UPD, required field not provided.

Response Codes

554 Network Control Language Programming Guide

103

ERRI=field name

ADD record, sequence key value already on database (that is, not unique).

104

ERRI=field name

ADD/UPD record, KEY=UNIQUE field value not unique.

105

ERRI=field name

UPD record, UPDATE=NO value change for field.

106

ERRI=format name

Format specified on an ADD or UPD does not exist.

107

ERRI=format name

Format specified on an ADD or UPD exists but is an INPUT format and
cannot be used for output.

111

ERRI=format name

FMT add, format name '*' is invalid.

112

ERRI=format name

FMT add, format name already exists.

114

ERRI=token in error

FMT/GET, format list syntax error.

115

ERRI=field name

FMT/GET, field name not defined in database.

Response Codes

Appendix D: NDB Response Codes 555

116

ERRI=format name

Format specified on a GET exists but is an OUTPUT format and cannot be
used for input.

117

ERRI=field name

You have referenced an NDB field twice in an OUTPUT format definition.

118

ERRI=field name

You have used an NCL keyword name in an OUTPUT format, but the
keyword is not an NCL system variable name.

121

ERRI=format name

GET, supplied format name not defined.

122

ERRI=field name

GET by key, key field not defined on database.

123

ERRI=field name

GET by key, field not keyed.

124

ERRI=sequence name

GET by sequence, sequence ID not defined.

125

ERRI=sequence name

GET by sequence, key field for sequence has been deleted (by &NDBDEF
DELETE).

126

ERRI=sequence name

GET by sequence, skip=0 specified and not currently positioned.

Response Codes

556 Network Control Language Programming Guide

127

ERRI=sequence name

GET by sequence, skip=0 specified and currently at EOF (front or back).

128

ERRI=field name

GET by key field, GENERIC= is invalid for this field format. Generic access is
only allowed for character and HEX fields.

130

ERRI=field name

&NDBGET histogram (KEY=) on sequence key not supported.

131

ERRI=sequence name

SEQ DEF-invalid sequence name.

132

ERRI=sequence name

SEQ DEF, sequence name already exists.

133

ERRI=N/A

SEQ DEF, from or to RID invalid.

134

ERRI=sequence name

SEQ DEF, field name not found or is not a key.

135

ERRI=N/A

SEQ DEF, from or to values not valid.

136

ERRI=field name

SEQ DEF, generic invalid with field format.

Response Codes

Appendix D: NDB Response Codes 557

137

ERRI=N/A

SEQ DEF, invalid null value for GENERIC=.

139

ERRI=sequence name

SEQ RESET, sequence not found.

140

ERRI=invalid data value

SEQ RESET, REPOS= value invalid or null.

141

ERRI=N/A

SEQ RESET, REPOS= not valid on a scan sequence that is not sorted, or, while
sorted, the primary sort field was substringed.

142

ERRI=sequence name

SEQ RESET, REPOS by RID only valid for a SCAN sequence.

143

ERRI=N/A

&NDBSEQ histogram (KEY=) on sequence key not supported.

144

ERRI=sequence name

RELPOS sequence is not a sequence constructed by &NDBSCAN.

151

ERRI=N/A

INFO by field number, number lt 1 or gt number fields in database.

161

ERRI=sequence name

SCAN sequence ID is already defined.

Response Codes

558 Network Control Language Programming Guide

162

ERRI=sequence name

SCAN sequence ID is currently in use, by an active scan for this user.

163

ERRI=field name

SCAN SORT= field name not defined on database.

183

ERRI=N/A

SCAN syntax error in scan request.

191.

ERRI=N/A

Unload failed. Accompanying messages will indicate the cause of the failure

193

ERRI=N/A

NDB ALTER failed.

237

ERRI=N/A

File integrity error, get if continuation DBDR failed. Database possibly
corrupted. Contact Technical Support.

238

ERRI=field name

File integrity error, get XFF if DBKR failed. Database possibly corrupted.
Contact Technical Support.

239

ERRI=field name

File integrity error, get KGE if DBKR failed. Database possibly corrupted.
Contact Technical Support.

240

ERRI=N/A

VSAM I/O Error. See log for more information.

Response Codes

Appendix D: NDB Response Codes 559

241

ERRI=N/A

Request not processed-invalid request code (internal error), should never
occur with NCL (&NDB) or NDB command.

242

ERRI=N/A

Request not processed-RPL busy flag set (internal error), should never occur
with NCL (&NDB) or NDB command.

243

ERRI=N/A

Request not processed-insufficient storage to queue request to database
handler. Try again.

244

ERRI=N/A

Request not processed-required text parameter not provided (internal
error). Should never occur with NCL (&NDB) or NDB command.

245

ERRI=N/A

Request not processed-Database not started.

246

ERRI=N/A

Request not processed-required VAL1 parameter not provided (internal
error). Should never occur with NCL (&NDB) or NDB command.

247

ERRI=N/A

Request not processed-required VAL2 parameter not provided (internal
error). Should never occur with NCL (&NDB) or NDB command.

248

ERRI=N/A

Request not processed-database not LOCKED. Only applicable to NDB START
UNLOCK command.

Response Codes

560 Network Control Language Programming Guide

250

ERRI=N/A

Request not processed-database is LOCKED or STOPPING.

251

ERRI=N/A

Request not processed-long running command currently in progress. For
example, NDB UNLOAD.

252

ERRI=abend code

This return code indicates that an NDB operation was terminated due to a
logical abend caused by a possible NDB corruption. The log will contain
useful debugging information.

For update requests, the NDB will be stopped and locked. For read/scan
requests, the request is terminated but the NDB will continue to process
other requests.

254

ERRI=N/A

Request not processed-feature not present, or your product is shutting
down.

Appendix E: Using Key Ranges with an NDB 561

Appendix E: Using Key Ranges with an NDB

If an NDB contains large amounts of data, or if you want to separate the data
records from the key and control records, you can use the KEYRANGES AMS
parameter. The information about the key structure of an NDB enables you to
do separate the records.

Note: This information is for guidance only. The key structures can alter with
future product releases. If you divide NDBs by key ranges, review this
information whenever you install a new release of your product.

This section contains the following topics:

NDB Key Structure (see page 561)
Suggested Key Ranges (see page 564)
Other Considerations (see page 565)

NDB Key Structure

The VSAM key in an NDB is divided into the following parts:

■ A type prefix, two bytes long

■ For some records, a field code, two bytes long

■ Key data, either the rest of the key, or four bytes shorter

■ For some keys, a suffix, four bytes long

The following shows the key structures in ascending order:

■ Control record (always first record in data set)

Rectype: X'0000'

Rest of key: All binary 0

■ Transaction control record (always second record in data set)

Rectype: X'0010'

Rest of key: All binary 0

NDB Key Structure

562 Network Control Language Programming Guide

■ Transaction journal records

Rectype: X'0011'

Sequence number: 2 bytes, binary (X'0001' to nnnn)

Rest of key: All binary 0

■ Field information records (2 types)

– First (Basic Field Information):

Rectype: X'0020'

Field code: 2 bytes binary

Rest of key: All binary 0

– Second (Contains Key Statistics):

Rectype: X'0021'

Field code: 2 bytes binary

Rest of key: All binary 0

■ Key records

Rectype: X'0030'

Field code: 2 bytes binary

Field value: (keylen - 8 bytes, see Storage of Values)

Suffix: 4 bytes, binary

■ RID to sequence key records (present only if NDB defined with a sequence
key)

Rectype: X'0032'

RID: 4 bytes, binary

Rest of key: All binary 0

NDB Key Structure

Appendix E: Using Key Ranges with an NDB 563

■ Data records. There are 2 formats, depending on whether the NDB has a
sequence key, or not:

– For databases defined without a sequence key, the format is:

Rectype: x'0040'

RID: 4 bytes, binary

Reserved: (keylen - 10) bytes long

Sequence number: 4 bytes binary (usually 0, used to handle large data
records)

– For databases defined with a sequence key, the format is:

Rectype: x'0040'

field code: 2 bytes, binary; always x'0001'

Seq key value: (keylen - 8 bytes, see Storage of Values)

Sequence number: 4 bytes binary (usually 0, used to handle large data
records)

Storage of Values

Field values and sequence key values are stored as follows:

CHAR fields

The character field value, padded to (keylen-8) with blanks.

NUM fields

4 bytes, binary, with the sign bit inverted (that is, 0 is stored as X'80000000',
100 is X'80000064'). Padded to (keylen-8) with binary 0.

HEX fields

Stored in compressed hexadecimal format. Padded to (keylen-9) with binary
0. The last byte (of the value part, not of the total key) contains the
significant length in binary (so X'ABCD' and X'ABCD00' are distinct; X'ABCD'
is stored as X'ABCD0000...02' and X'ABCD00' is stored as X'ABCD0000...03').

DATE fields

Stored in unsigned packed. For example, 21 September 2004 is stored as
X'040921'. Padded to (keylen-8) with binary 0.

Suggested Key Ranges

564 Network Control Language Programming Guide

FLOAT fields

Stored in 8-byte floating point, with the following change to force character
compares to work correctly:

■ If sign bit is 0 (that is, number is 0 or positive), invert the sign bit.

■ If the sign bit is 1 (that is, a negative number), invert the entire 8-byte
field.

■ Key length padding is binary 0.

CDATE fields

Stored internally in 3-byte binary with value 1 (x'000001') representing
1/1/0001. Key length padding is binary 0.

TIME fields

Stored internally in 5-byte binary as a number of micro-seconds, values
from 0 to 86,399,999,999 (86,400 seconds in a day, times 1000000 for
microseconds, -1 microsecond). The largest hexadecimal value is
x'141DD75FFF'. Key length padding is binary 0.

TIMESTAMP fields

Stored internally as a concatenation of the CDATE (3-byte) and TIME
(5-byte) fields (CDATE first). Thus a TIMESTAMP takes 8-bytes. Key length
padding is binary 0.

Suggested Key Ranges

The following are suggested key range breakups:

X'0000' to X'002F'

Includes the control, transaction, and field records. The transaction records
have the most activity. The field records can be in the same key range, as
they are only referenced on NDB START, or when an &NDBDEF statement is
processed.

Other Considerations

Appendix E: Using Key Ranges with an NDB 565

X'0030' to X'003F'

Includes all the key records, and, for databases with a sequence key, the RID
to sequence key relation records.

Splitting the key records by field is not feasible because the field code is not
readily determined. If fields have been added or deleted, the code can
change if an NDB is unloaded and reloaded. The only field code that is
guaranteed is the field code for a sequence key, which is always X'0001'.

If field codes are necessary for splitting key records, the field information
records (record type X'0020') contain the field code in bytes 3 through 4 of
the key. The code is also in the data, in the 2 bytes immediately following
the key. The next 12 bytes after the field code in the data contain the field
name. Remember that this field code can be different if an NDB is unloaded
and reloaded.

X'0040' to X'FFFF'

Contains all data records.

For NDBs with a sequence key, the data can be broken on sequence key
value by preceding the value limits with X'00400001'. For example, if an
NDB has a character sequence key, and you want to break A-K, and L-Z, you
can use:

X'00400001C1' to X'00400001D2' (A-K)

X'00400001D3' to X'00400001E9' (L-Z)

Other Considerations

Failure to provide complete key ranges could lead to VSAM errors if a key value
cannot be matched to a key range.

Using key ranges other than to separate control, key, and data records, or, for
NDBs with a sequence key, sequence key ranges, is not recommended.

Appendix F: Using NCLEX01 for NDB Security 567

Appendix F: Using NCLEX01 for NDB
Security

A user-nominated NCLEX01 exit can be invoked if SYSPARMS NDBOPENX is set
to YES. In this case, all &NDBOPEN statements that actually open the NDB (for
this process) result in the nominated NCLEX01 exit being called.

This section contains the following topics:

NDB Open Exit Call Details (see page 567)

NDB Open Exit Call Details

The following describes the parameter list passed on an &NDBOPEN call to
NCLEX01:

■ The standard parameter list, as mapped by the $NMNCEX1 macro.

■ This parameter list contains information common to all calls to NCLEX01 for
various reasons. It contains a function code, and information about the
current user ID, and so on. The security correlator is passed to allow access
to any security information provided by any security exits.

■ On an &NDBOPEN call, the NEXFUNC field has a value of 12 (decimal).

■ Field NEXNDEX1 contains a pointer to a supplementary parameter list
containing additional information.

■ A supplementary parameter list, mapped by the NEXND DSECT. This DSECT
is in the NCLEX01 macro.

Fields in this DSECT include:

NEXNDNAM DS CL8 NDB name being opened

NEXNDFL1 DS X Flag byte

NEXNDOPX EQU X'80' ... EXCLUSIVE on &NDBOPEN

NEXNDOPI EQU X'40' ... INPUT on &NDBOPEN

NEXNDOKM DS 0XL2 Following 2 bytes.

Note: initialized to 2X'FF'.

NEXNDOK1 DS X ... first OK operations flag.

NDB Open Exit Call Details

568 Network Control Language Programming Guide

NEXNDGTO EQU X'80' ... 1 = &NDBGET ok.

NEXNDSCO EQU X'40' ... 1 = &NDBSCAN ok.

NEXNDADO EQU X'20' ... 1 = &NDBADD ok.

NEXNDUPO EQU X'10' ... 1 = &NDBUPD ok.

NEXNDDLO EQU X'08' ... 1 = &NDBDEL ok.

NEXNDDFO EQU X'04' ... 1 = &NDBDEF ok.

NEXNDINO EQU X'02' ... 1 = &NDBINFO ok.

NEXNDOK2 DS X ... 2nd ok operations flag.

NEXNDUDL DS H Length (0-50 decimal) of user data
from &NDBOPEN statement.

NEXNDUDT DS CL50 User data (padded/truncated to 50
chars) from &NDBOPEN statement
(pad is blank).

These fields can be referenced to determine the action to take.

By returning R15 not equal to 0, all access to the NDB from the NCL process is
denied. ASN NDB response code of 40 is returned, and this is handled based on
the &NDBCTL ERROR= setting.

If R15 is returned with a 0, the 2-byte NEXNDOKM field is examined. If all of the
defined bits are off (as listed previously), then the effect is the same as setting
R15 not 0. Note that the NEXNDOKM field is initialized to all bits on before the
call.

If any bits in the NEXNDOKM field are off, the associated &NDBxxxx verb cannot
be used. Attempts to use it results in an NDB response code of 41. This too is
handled as per the &NDBCTL ERROR= setting.

You can deny the use of the &NDBDEF verb with this exit. This forces the use of
the NDB FIELD command to add, update, or delete field definitions from the
database.

If the exit terminates abnormally while processing the &NDBOPEN request, the
NCL process is terminated with an error.

The exit is attached as a subtask in all environments. It should be coded
re-entrant because multiple copies may be executing simultaneously.

Appendix G: Using the Batch Command Interface 569

Appendix G: Using the Batch Command
Interface

This section contains the following topics:

Batch Command Interface (see page 569)
BCI Command Types (see page 570)
BCI Input (see page 570)
BCI Output (see page 571)
BCILOGON Command—Establish Session (see page 571)
BCIDISC Command—Terminate Session (see page 573)
BCIEXITC Command—Control Command Exit (see page 573)
BCI Operation (see page 574)
BCI Command Exit (see page 577)
JCL Return Codes (see page 578)

Batch Command Interface

You invoke the Batch Command Interface (BCI) by executing the NMBCI
program in a batch processing environment or by calling it from other programs.

Note: The BCI is available on z/OS systems only.

Commands are read from a nominated input device (in card image format) and
the replies received are routed to the nominated output device. A user
command exit can also be called where commands may be added, changed, or
deleted. Return codes from an executed NCL procedure may be translated to
JCL return codes, which can then be interpreted using conditional JCL
statements.

Requests are executed by NCL procedures running under the User Services
option, and the unformatted results of these requests are returned to the
output device.

This interface may be used to connect to a product region operating within the
same or within a different VTAM domain.

BCI Command Types

570 Network Control Language Programming Guide

BCI Command Types

Commands read from an input file fall into two categories:

■ BCI control commands used to provide details for session establishment, to
request activation of a BCI command exit, and to disconnect the session.
These commands are described in a following section.

■ Any other commands, which are routed unchanged to the target region for
interpretation and execution. These are processed by NCL procedure
$USERBCI, which runs under the User Services option.

Once a BCI command exit has been activated, all non-BCI input commands are
passed for pre-processing before continuing. The exit can add new control or
user commands, and can modify command contents or delete commands.

BCI Input

Commands are extracted from an input file in card-image format. The input file
is referenced by the SYSIN DD statement and may be any LRECL=80 data set.

Only the first 72 columns of the record can contain command data; the
remainder of the record is ignored. A command may be preceded by one or
more spaces and is terminated by a space. Any data (including additional blanks)
after the command, is assumed to be operands or parameters associated with
the command.

BCI Output

Appendix G: Using the Batch Command Interface 571

BCI Output

An activity log is directed to the nominated output file and consists of
121-character print lines where the first byte is a machine control character. The
file is referenced by the SYSOUT DD statement and should be specified as
RECFM=FBM with an appropriate block size.

The activity log records the commands processed by the BCI, the user
commands (after insertion or modification by any command exit), the replies
from the User Services procedure, and any messages issued by the BCI itself.

The column headed Terminal indicates the device that issued the command as
one from the following:

■ The system input file name

■ The LU name of the virtual terminal used for the session

■ The name of the command exit (if the command is added or modified)

An additional flag character preceding the command or message reply indicates
the source as follows:

+ Indicating it was read from the system input file.

- Shows it was inserted or changed by the command exit.

= Indicates a message issued by the BCI.

A blank indicates a reply from the User Services procedure.

BCILOGON Command—Establish Session

The BCILOGON command establishes a session with the desired product region
on behalf of the specified user.

This command has the following format:

BCILOGON applname

 USER userid (/password | PASSWORD password)

 [MENU menu]

 [LUNAME applid | LUPREF luprefix]

BCILOGON Command—Establish Session

572 Network Control Language Programming Guide

applname

Is the VTAM APPL name of the product region to which you want to
connect. This value must be the first parameter following the BCILOGON
command.

USER userid { /password | PASSWORD password }

Provides the valid user ID and password combination to use for the session.
The user ID and password can be specified in a single string after the USER
keyword (that is, as USER userid/password) or provided separately (that is,
as USER userid PASSWORD password). Both the user ID and password must
be specified if BCILOGON is run as a batch job on demand.

If accessing BCI from another program, the user ID and password for that
system (as taken from the UAMS database or the equivalent security exit
procedure) are defaulted for the interface. Logging on to BCI is transparent,
without you having to provide user ID and password, or the ID of the user
who submitted the batch job.

MENU menu

Specifies the initial menu selection data for the User Services facility. This
value can contain up to five characters. If present, the characters U.menu
are passed to the product region to perform initial menu selection.

If omitted, the User Services procedure defined for the BCI user ID is
selected (this should be $USERBCI in the BCI facility distributed). However, if
the user is set up to use the standard $USERSER procedure, a menu option
of BCI can be specified.

LUNAME applid or LUPREF luprefix

Specifies the entire ACB name (LUNAME applid) or a one- through
five-character LUNAME prefix (LUPREF luprefix) that the BCI attempts to
open to connect to the product region. If an open fails for any reason,
interface processing terminates immediately.

When the LUPREF operand is used, a three-digit number (nnn) is appended
to the LU prefix value. Initially nnn is set to 001 and an attempt to open ACB
luprefix001 is performed. If this ACB is in use or varied inactive, the suffix
keeps incrementing. The open is retried until one of the following
conditions occur:

■ The open is successful.

■ An unrecoverable open error occurs.

■ The list of defined ACBs is exhausted.

If you do not specify the LUNAME and LUPREF operands, then an LUPREF of
NMBCI is assumed.

BCIDISC Command—Terminate Session

Appendix G: Using the Batch Command Interface 573

Examples: BCILOGON Command

BCILOGON NMCDRSC USER XYZ/XYZ

BCILOGON NMMAIN USER ANET LU ABCINET PASSWORD GO

BCILOGON NMTEST USER OPER LUPREF NMTSO PASSWORD XYZZY

Note: A user command exit can generate the BCILOGON command.

Other than the applname parameter that must be the first parameter after the
BCILOGON command, subsequent parameters can be entered in any order.

BCIDISC Command—Terminate Session

The BCIDISC command terminates the session with the product region after
processing with that system is complete.

The BCIDISC command has no parameters and has the following format:

BCIDISC

This command logs you off the product region and frees the VTAM ACB being
used this session. If the end of the input file is reached and an active session
exists, then a BCIDISC command is assumed.

BCIEXITC Command—Control Command Exit

The BCIEXITC command activates or deactivates a user command exit. You can
use a user command exit program to inspect user commands before being
processed by the BCI.

This command has the following format:

BCIEXITC [exit_name]

exit_name

Is the one- to eight-character name of the program to be loaded as the user
exit for the BCI. The program must reside in a standard load library.
Specifying the exit name on the BCIEXITC command loads the module only.
The exit is not called until a command is next read from the input file.

If the exit name is omitted, any currently executing exit is deactivated.

Only one command exit can be active at any one time. If you must invoke a
different exit, first use a BCIEXITC command to deactivate the current exit.

BCI Operation

574 Network Control Language Programming Guide

BCI Operation

After completing a successful BCILOGON command, BCI converses with a User
Services procedure defined to the product region. The BCILOGON command
makes an initial menu selection of U (for the User Services menu).

By using the optional MENU operand of the BCILOGON command, additional
data can be passed to the initial procedure to invoke a special procedure for
conversing with BCI. This initial procedure uses the &ZPSKIP NCL statement to
receive and process this data in the usual manner.

Note: For more information, see the Network Control Language Reference
Guide.

As previously mentioned, BCI makes use of the Virtual 3270 Interface. The User
Services procedure (and its associated panel) used for the conversation must
meet certain basic requirements (see page 581). The first screen line on the
panel should contain three output fields for control information. The second
line is an input command line, and the remaining lines are used to return any
output data. The supplied procedure ($USERBCI) and panel ($USV3270) conform
to these standards and should be used as a model.

BCI defines itself to the Virtual 3270 Interface as a 3270 Model-4 and, while it
will only send a single command on the first input line of the panel, it will accept
up to 41 data lines in the response (the Model-4 type terminal contains 43 lines
of 80 characters each).

After any command has been processed by the procedure, including the
BCILOGON command, the first two control fields are reported as the panel
name and procedure name respectively. The third field is regarded as a return
code, and set as &RETCODE. If this is non-zero, the user is disconnected and
documentary messages written to the system output file. The job is canceled
with a JCL return code of 12.

BCI Operation

Appendix G: Using the Batch Command Interface 575

Procedure $USERBCI

Procedure $USERBCI contains all the commands necessary to communicate with
a virtual BCI 3270. It may also be used for a real 3270 and be extended by the
installation to cater for additional functions. The procedure contains comments
which adequately describe the basic functions it performs.

$USERBCI recognizes several commands as functions it must execute. Any other
commands received are assumed to be product commands and are processed
by specifying them on an &INTCMD statement. This makes the procedure as
powerful as the privileges associated with the particular user ID for which it is
invoked, and can be restricted at the installation's discretion.

The results of an &INTCMD command are accumulated by issuing &INTREAD
statements and placing the resulting messages on the output lines of the panel.

If all panel output lines are used, the data is sent to BCI by issuing an &PANEL
statement. The messages are extracted and BCI awaits further output. More
than one panel may be required to send the results of some commands. This
process is automatically handled by the interface.

The following commands are not passed to the product region but are
processed by the distributed procedure $USERBCI:

ECHO [nn] [text]

Is recognized by $USERBCI as a test command. The specified text is echoed
nn times (up to 41 maximum) in the output lines of the panel. If nn is
omitted or non-numeric, the text is echoed 3 times. If no text is supplied, a
sequence of characters is returned.

EXIT

May be used to emulate the F3 key and will end procedure $USERBCI. This
can be useful if $USERBCI is nested from another BCI NCL procedure. It is
not used to terminate the BCI session (see page 573).

INVRC [nn]

Is used by $USERBCI to set &RETCODE to nn. If this is a non-zero value, the
batch program will terminate immediately with message N96009 issued.

BCI Operation

576 Network Control Language Programming Guide

MORE

A request to perform another &INTREAD operation. After an &INTCMD has
been issued, the results are read using &INTREAD commands. Since an
unknown number of messages may be returned, the procedure makes some
assumptions as to when the last message has been read. If you suspect
more messages are available, these can be solicited through the MORE
command. Any number of MORE commands may be issued.

NOMORE

Signifies that any outstanding messages not yet returned should be purged.
This results in the procedure issuing an &INTCLEAR statement to discard any
such outstanding responses.

TRACE ON|OFF

May be used to issue an NCL &CONTROL TRACE or &CONTROL NOTRACE
command in the BCI NCL procedure. This may be useful for debugging BCI
NCL procedures.

Customize $USERBCI

An installation may further tailor the $USERBCI procedure to extend its function.
For example, certain commands could be recognized to invoke other procedures
or panels if desired.

If the procedure is modified by the installation, CA recommends that you test it
using a real 3270 before testing it on the BCI. The procedure can be tested at
any 3270 (this does not have to be a Model-4, as the number of screen lines is
handled by the procedure).

If a 132-column screen is used, output is truncated by BCI to the first 79
characters. When testing at a real terminal, MORE command processing can be
abandoned by pressing F12 or F24.

For ease of testing or occasional usage, we suggest you amend the existing User
Services procedure and its associated panel, to allow entry to the tailored
procedure from a normal session. If you do this, then users won't have to log
onto the product using a BCI user ID. This eliminates a potential conflict
between BCI and online usage.

BCI Command Exit

Appendix G: Using the Batch Command Interface 577

BCI Command Exit

When a record is read from the system input file, it is first scanned to determine
whether it is a BCI control command. If not, it is recognized as a user command
to pass to the product region. However, before it is passed, it is reformatted to
remove leading blanks. If a command exit is active, it is called passing the
command as a parameter. The command exit can then choose to modify the
command, to reject it, or to insert additional commands into the input stream.

On entering the exit, Register 1 contains the address of a 76-byte area as
follows:

Bytes 1 through 4

Contain a binary fullword indicating the length of the following data which
can be a maximum of 72 bytes.

Bytes 5 through 76

Contain the user command and data with leading blanks removed and any
unused characters to the right filled with blanks.

Before returning, the exit sets Register 15 with a return code to indicate what
action BCI is to take with the returned data.

Return Codes

0

Indicates to pass the command to the product region. The actual command
may have been modified and its length changed by updating the 76-byte
area as passed as the parameter to the exit. The reformatted command is
reported on the system print file (except the BCILOGON command).

4

Indicates to pass the command to the product region (as for R15=0).
However, after it has been fully processed, the exit is invoked again instead
of reading the next card from the system input file. Therefore, this return
code is used to insert commands. The user command area presented on the
subsequent invocation contains the command as returned on the last such
call, and not the original command.

8

Indicates to ignore and not report the command.

JCL Return Codes

578 Network Control Language Programming Guide

The command exit can be used to generate a BCILOGON command to generate
automatically user ID and password data. If a BCILOGON command is returned,
only the command and the product region VTAM APPL name are reported on
the system print file.

The command exit is especially useful for removing superfluous commands that,
for example, a library system generates. However, any user commands before
the BCI command is detected are ignored, so the BCIEXITC command itself can
exist in a library member and be detected correctly.

As the command exit is loaded by the BCIEXITC command and merely executed
on each subsequent command until deactivated, the program is effectively
resident. Therefore, data areas can be defined within the exit to control calls to
the exit during insertion processing. Additionally, if a short command is returned
in the command area, the exit can use the rest of the area because that area is
not inspected, amended, or reported by BCI. If the length field is greater than
72, it is assumed to contain 72. Similarly, if the length is zero or negative, it is
assumed that no command is present and no action is taken. However, if the
return code is 4, the exit is invoked again. In both instances, BCI does not modify
the length field.

JCL Return Codes

When the BCI program terminates, it sets a JCL return code which may be tested
for successful completion. The return code will have one of the following values:

0

No errors detected.

4

BCI has processed all input cards and issued Important! messages. Check
the messages to ensure that BCI has made the correct assumptions.

8

BCI has processed all input cards and has found that serious errors and
incorrect results are likely. Check the messages and correct the input.

12

BCI has detected serious errors processing all input cards. The results are
incomplete. Check the message and correct the input.

JCL Return Codes

Appendix G: Using the Batch Command Interface 579

1001-1009

The BCI NCL procedure has ended with a non-zero return code (&RETCODE).
The JCL return code is the value in &RETCODE plus 1000. For example, if
&RETCODE is set to 2, then the JCL return code returned will be 1002. BCI
will issue message N96009 and terminate the job with the JCL return code.

U4095

BCI has detected a serious problem. The BCI output file will contain
messages that indicate the nature of the error; it may be an internal error. A
dump is produced which may be required for problem diagnosis by your
product supplier.

Example: JCL Return Codes

//NMBCI JOB etc

//NMBCI EXEC PGM=NMBCI

//SYSOUT DD SYSOUT=A

//SYSIN DD *

BCILOGON NMTEST USER TESTBCI/TESTPSWD MENU BCI LU NMDOSBCI TRANSMIT TESTFILE

SHOW USERS

LIST $USERBCI

EXEC TESTPROC

BCIDISC

BCILOGON NMACCTS PASSWORD MONEY USER WAGES

TRANSMIT PAYROLL

BCIDISC

/*

//

Appendix H: Virtual 3270 Interface 581

Appendix H: Virtual 3270 Interface

This section contains the following topics:

About the Virtual 3270 Interface (see page 581)
Virtual 3270 Interface (see page 581)
Control the Conversation (see page 583)

About the Virtual 3270 Interface

The Virtual 3270 Interface allows an external program to communicate with
your product, in particular with NCL procedures, using full-screen dialog.

Requests are normally passed to NCL procedures running under the User
Services option. The interface user program and NCL procedure can determine
the state and flow of data on the conversation as they desire.

This interface may be used to connect to a product region operating in the same
or a different VTAM domain.

Virtual 3270 Interface

Various calls to the interface are supported to simplify session establishment
and termination, and for reading and writing the information contained in 3270
data streams.

A parameter list supplied as the DSECT $NMVTAP in the product distribution
library is used for communication. Once output has been received on the
session a Field Descriptor List is built and the address placed in the main
parameter area. This allows the interface user program to examine the contents
of the panel and to update input fields for return your product.

Virtual 3270 Interface

582 Network Control Language Programming Guide

The NMV3270I load module can be linked to a program requiring interface
services, or loaded as part of an initialization process. Calls to the interface are
then supported by passing the initialized parameter area to provide the
following functions:

Open

Starts a session with the product region using parameter list information to
determine the target system applid, the local VTAM ACB name to be used
for the session, the user ID and password for the user requesting the logon,
the virtual 3270 screen size, and any initial menu selection required.

If an LUNAME prefix is used for the ACB name (APPLID) and the ACB fails to
open because the APPL has been varied inactive, the operation retries using
the next generic ACB name. This process is repeated until an open is
successful, or until five successive inactive or unknown ACB name errors
occur.

Receive

Is used to receive a full-screen of data and builds a Field Descriptor List
which describes all input (and optionally output) fields found on the panel.
This may then be examined by the calling application to determine the
contents of the various fields.

Send

Is used to return data to the product region. The Field Descriptor List may
be plugged with the address of input data which is to be placed in panel
input fields. A code specifying the function key to be pressed can also be set
(the default is the Enter key).

Send, then Receive

Performs both send and receive functions before returning control to the
calling program. This is useful when issuing a request which expects to
solicit some data in reply.

Send, then Terminate

Performs a Send then awaits session termination before returning control
(for example, after a LOGOFF command has been sent). If the session does
not shut down in an orderly fashion, then it is disconnected before control is
returned to the calling application.

Terminate

Closes the session immediately without further I/O and returns to the caller.

Control the Conversation

Appendix H: Virtual 3270 Interface 583

More documentation may be found in the DSECT $NMVTAP describing the fields
which can be set for the various calls, and those which may be set by the
interface on return.

The supplied DSECT $NMFLDDS can be used to map the data returned in the
Field Descriptor List obtained from the panels used in a conversation. See those
DSECTS in the distributed NMMACLIB for details on this facility.

Control the Conversation

By default, NMV3270I selects the User Services menu as the initial menu
selection. This can be modified on the Open call. However, no matter what
function gets control and issues the first I/O, it is the responsibility of the
program calling the interface and the NCL procedure (or other function) to
agree to some protocol and maintain proper synchronization.

The Virtual 3270 Interface provides services which simplify VTAM session
communication, and let you analyze the data being passed across the session
using a 3270 full-screen conversation.

Interface to NCL Procedures

Once a session has been established through the Virtual 3270 Interface and has
made an initial menu selection that passes control to an NCL procedure, the
procedure begins the conversation by issuing an &PANEL statement. This results
in a 3270 data stream being sent to the interface.

The interface user must issue a Receive call at which time the virtual panel
image and Field Descriptor List are built and returned to the caller.

By requesting a Send (or a Send then Receive) function, any input is returned
with the appropriate attention key set. This satisfies the &PANEL statement at
which time the procedure can examine the input fields through their token
names, and the key through the &INKEY system variable in the usual manner.

Control the Conversation

584 Network Control Language Programming Guide

Panel Characteristics

While any panel definition could be used for this conversation, the simpler the
panel definition the easier it is for the interface user to process. Panel
$USV3270 is used by both the Batch Command Interface and the TSO Command
Interface and uses specific conventions.

The panel is defined as a Model-4 (43 line) panel, the first line containing three
protected fields as follows:

■ The first field contains the characters $USV3270 and can be used to verify
that the interface user is connected to an NCL procedure designed to handle
this type of communication.

■ The second field contains the system variable &0. On output this will be
substituted and contains the name of the currently executing procedure.
This helps maintain synchronization throughout the conversation.

■ The third field contains the system variable &RETCODE which can be used to
determine the status of processing within the procedure.

The contents of these fields are extracted and placed into defined areas of the
parameter list passed between the user program and the interface, regardless
of whether the user requested all or only input fields be built in the Field
Descriptor List. Hence there is an advantage in maintaining this first line
convention for any application.

The second line of panel $USV3270 is an input field and contains the token
name &REQUEST. This of course appears to the user program as the first input
field in the Field Descriptor List and hence is easily accessible. Normally this
would be used to describe the type of function that the interface user is
requesting from the NCL procedure.

Subsequent lines of the panel are all input lines and may be used to contain
qualifying input from the user application, or for returned text data from the
NCL procedure.

Where any external application is required to use the services of the Virtual
3270 Interface, CA recommends that the procedures and panels described be
used as models to assist development.

Index 585

Index

#ERR panel control statement • 108, 155
#OPT panel control statement PREPARSE

operand
PREPARSE operand • 138

$

$CAGLB • 68, 185
$NCL map subvectors • 213
$NMNCPL macro • 237
$USERBCI • 570, 575

customizing • 576

&

&APPC verb • 393
&ASSIGN verb • 79, 118, 126

assigning values to variables • 76
&CONTROL NOUCASE operand • 78
&CONTROL verb

CONT operand continuation reactivation •
52

NOCMD operand • 57
NOCONT operand continuation deactivation

• 52
NODUPCHK operand no label checking • 60
NOLABEL operand • 59
NOMDOCHK operand • 278
NOPFKEY operand • 133
NOPFKMAP operand • 133
PFKALL operand • 133
PFKMAP operand • 133
PFKSTD operand • 133
SHAREW operand • 146
SHRVARS operand • 66, 123

&CURSCOL system variable • 136
&CURSROW system variable • 136
&FILE verb • 206

ADD • 192
CLOSE • 208
KEY operands in UDB processing • 210

KEYVAR operand • 210
OPEN • 207

&HEXEXP verb • 214, 216
&HEXPACK verb • 216
&INKEY system variable • 133
&INTCLEAR verb • 38
&INTCMD verb • 38
&LOCK verb • 235, 251

ALTER= operand • 252
resource locking • 251
WAIT= operand • 252

&LOOPCTL verb • 30
&LUCOLS system variable • 135
&LUROWS system variable • 135
&MSGREAD verb • 232
&NDB statements relation to &FILE statements

built-in functions • 501
syntax • 502
verb summary • 500

&NDBCLOSE verb • 350
&NDBFMT verb • 355
&NDBGET verb • 360
&NDBINFO verb • 362
&NDBOPEN verb • 349
&NDBQUOTE built-in function protecting data

values • 348
&NDBSCAN statement • 377

efficient use of • 389
&NDBSEQ verb

KEEP • 359
RESET • 359

&NDBUPD verb • 351
&PANEL verb • 107
&PARSE verb • 78
&PPI verb • 461, 464
&PPIDATALEN user variable • 462
&PPISEDNERID user variable • 462
&PPOALERT verb • 230
&RETCODE system variable • 462
&RETURN verb • 66
&SETVARS verb • 78

586 Network Control Language Programming Guide

&SYSFLD system variable • 124
&SYSMSG system variable • 123
&VARTABLE verb • 82, 83, 87

retrieval • 80
&VSAMFDBK system variable • 192
&WRITE verb • 74

displaying information • 56
&ZCURSFLD system variable • 136
&ZCURSPOS system variable • 136
&ZFDBK system variable • 462
&ZMDOCOMP system variable • 278
&ZMDOFDBK MDO return code • 278
&ZMDOID system variables • 278
&ZMDOMAP system variable • 278
&ZMDONAME system variable • 278
&ZMDORC MDO return code • 278
&ZMDORC system variable to check map

connection • 274
&ZMDOTAG system variable • 278
&ZMDOTYPE system variable • 278
&ZMODFLD system variable stack • 126
&ZPPI system variable • 462
&ZPPINAME system variable • 462

3

3270
data stream • 583
full-screen conversation • 584
interface • 573, 584
Model • 574

A

Abnormal termination • 345
Access Control Block (ACB) • 573
access to resources • 254

competition for • 254
synchronizing processes • 254

activity log • 571
logon request message • 199
suppression of comments • 57

adding records to an NDB • 350
aligning variables • 73
ALL-FIELDS • 355
ALLOCATE command • 191

allocating UDBs dynamically • 189
altering resource lock status • 252
alternate indexes • 259

definition • 199
update restrictions • 219

alternate indexes and VSAM • 200
alternative function keys on panels • 133
alternative substitution character Panel Services

• 138
APPC • 425

&APPC verb set • 393
application design • 412
attach procedure • 397
ATTACH transaction allocate a procedure •

418
client/server definition • 399
Common Programming Interface for

Communications • 391
confirm data sent • 403
confirmed response • 408
CONNECT transaction connect to active

process • 418
conversation states &ZAPPCSTA system

variable • 394
conversation types • 427
conversations between two systems • 543
data mapping • 401
data mapping and Mapping Services • 402
default modes • 428
definition examples • 451
destinations • 436
error processing • 409
establishing sessions • 447
force data transmission (FLUSH) • 403
GDS variables • 400
local conversations • 542
log modes • 439
LU verb set • 393
mapped conversations • 427
nominating mode names • 438
notification mode • 401
parallel session links • 447
program initialization parameters • 398, 400
programming facilities • 391

Index 587

receive state • 404
rejection mode • 424
Remote Procedure Call (RPC) transaction •

417
return code information • 411
running sample conversations • 542
same LU conversations • 543
sample conversations • 410, 541
send state • 400
session • 398
session initiation • 446
session polarity • 427
sessions for conversations • 450
single session links • 448
source procedure • 541
source system • 541
switching states • 404
target procedure • 541
target system • 541
transferring a conversation • 424
using • 391

APPC, client/server connection mode
automatic connection mode • 422
notification mode • 423
rejection mode • 424
server processes • 420

APPC, conversation • 392
attach processing • 399
communication path • 397
data flow • 395
deallocate • 410
destination information • 397
execution environment • 399
initiation (allocation and attach) • 392
processing • 395
receive state • 399
return codes • 395, 411
send operations • 400
send state • 400
sending and receiving data • 392
sending data • 400
states • 394
status (system variables) • 395
system variables • 395, 411

termination (deallocation) • 392
APPC, conversation allocation • 397

completion • 399
destination • 397
program initialization parameters • 398
sessions • 398
Transaction Control Table (TCT) • 397
transaction identifier • 397

APPC, conversation deallocation • 410
APPC, execution environment

background server • 399
user region • 399

APPC, extensions • 414
ATTACH transaction • 418
automatic connection mode • 422
client/server connection mode • 421
client/server processing • 419
CONNECT transaction • 418
extended verb set (list) • 414
notification mode • 423
rejection mode • 424
Remote Procedure Call (RPC) transaction •

417
server processes • 420
START transactions • 416
transactions • 415
transferring a conversation • 424

APPC, implementing security • 430
from a remote system • 443
region use • 444

APPC, links
activating automatically • 445
activating manually • 444
deactivating manually • 445
defining • 430

APPC, LU type 6.2
option sets • 428
sessions • 426

APPC, receiving data • 405
confirmation request • 408
deallocation indication • 408
error processing • 409
into MDOs • 407
into NCL tokens • 406

588 Network Control Language Programming Guide

send indication • 408
switching states • 404

APPC, sending data • 400
error processing • 409
forcing transmission • 403
GDS variables • 400
mapped • 401
mapping NCL tokens • 401
Mapping Services • 402
MDOs • 268
NCL tokens • 401
requesting confirmation • 403
switching states • 404
when data mapping is not supported • 403

APPC, START transactions • 416
dependent process • 416
independent process • 416

APPC, tables
Dynamic Link Table (DLT) • 437
interactions • 432
Mode Control • 438
Mode Control Table (MCT) • 439, 440
Option Set Control Table (OSCT) • 438
requirements • 431
Transaction Control Table (TCT) • 434

APPC, transactions
generic • 435
qualified • 435
transaction identifier (TRANSID) • 397

arithmetic in NCL • 63
&CONTROL REAL operand • 97
arithmetic expressions • 98
arithmetic operators • 99
compound expressions • 98
controlling evaluation order • 102
divide quotient • 100
divide remainder • 100
division • 100
division by zero • 101
evaluation of expressions • 102
formatting numbers (&NUMEDIT) • 104
integer arithmetic • 96
negative numbers • 103
operator precedent • 101

positive numbers • 103
real number arithmetic • 96
signed numbers • 103
substitution and expressions • 103
using parentheses • 102

ASCB address using PPI • 476
ASN.1

defining maps • 278
map definition • 269
using with Mapping Services • 278

ASN.1 data types • 278
constructed • 278
simple • 278

assigning values to variables • 63
assignment statements

definition • 63
explicit • 75
format • 63

asynchronous panels
display • 107
operation • 148
using • 147

ATTACH command • 236
attribute byte • 110
autohold screen mode • 145
automatic internal validation in Panel Services •

123

B

background
environments • 36
logger • 36
LOGPROC • 234
monitor • 36

backing up • 338
base clusters • 200

keys • 198
processing • 202

base keys definition • 199
Batch Command Interface (BCI) • 570, 584
batch forward recovery • 323, 342
batch processing environment • 570
BCI command exit • 570
BCI control commands • 570, 577

Index 589

BCIDISC • 573, 575
BCIEXITC • 573
BCILOGON • 571

bidding for windows • 146
binary full word • 577
BIND command • 445
blanks

significance in data • 318
trailing • 502
use as delimiters • 502

blinking facility on panels • 118
broadcast messages • 149
buffering increasing • 360
built-in functions • 75

definition • 62
format • 62

C

callback API • 237, 243
function codes • 243
return codes • 245

calling program • 581
canceling procedures • 30

using FLUSH or END command • 30
captions (panels) • 108
card image format • 570
case data • 348, 384
changed fields in panels • 126
changing resource lock status • 252
CHAR data • 318
characters special • 383
CMS files (VM systems)

NCL library storage • 26
NCL procedure library storage • 34

CNMNETM module • 458, 467
CNMNETV module • 458, 467
CNOS transaction • 447
color in panels • 108
color terminals panel error displays • 155
column alignment problems preparsing on

panels • 141
command data • 570
command execution

dependent • 42

inline • 41
command exit • 571, 577
command statements • 64
commands

&CONTROL CONT reactivating continuation
• 52

&CONTROL NOCONT deactivating
continuation • 52

ALLOCATE • 191
correlation of results • 42
DEALLOCATE • 189, 220
DEFMSG modifying table • 228
END • 30
EXEC • 29
FLUSH • 30
LIST • 31
NCLCHECK • 27
NCLTEST • 28
routing to another system • 43
SHOW EXEC • 31
SHOW LOCKS TEXT= operand • 253
SHOW NCL • 49
SHOW UDB • 209, 510
SHOW UDBUSER • 510
SHOW USERS • 35
SHOW VSAM • 209, 510
START • 29
UDBCTL • 205, 220

commands specific
ATTACH • 235
BIND • 446
DELLINK • 437
DELOPSET • 439
LINK START • 444
REPLINK • 437
REPOPSET • 438
SHOW SUBSYS • 239
SUBSYS DEFINE • 237
SUBSYS FORCE • 239
SUBSYS RELOAD • 239

commands, DEBUG • 255
BREAKPOINT • 260, 261
CLEAR • 261
DISPLAY • 263

590 Network Control Language Programming Guide

HOLD • 259
LIST BREAKPOINTS • 261
MODIFY • 263
RESUME • 261
SET NCLTRACE= • 263
SOURCE • 263
START • 258
STEP • 260, 261
STOP • 258

commands, INTQ • 45
correlation of results • 42
dependent execution • 42
inline • 41
issuing from an NCL process • 41
message delivery rules • 42

commands, SYSPARMS
CMDREPL • 257
JRNLPROC operand • 323, 345
LOGPROC operand • 40
MENUPROC operand • 39
NCLGLBL operand • 67
PPOPROC operand • 40, 230

comment lines in NCL
displayable • 56
highlighting keywords • 56

comments suppression character • 57
&CONTROL NOCMD • 57

Common Programming Interface for
Communications • 391

communicating between NCL processes • 45
using PPI • 458

complex variables • 76
table manipulation • 79

concurrent conversations (APPC) • 426
concurrent execution of processes • 37

slave processes • 37
connecting a process to NDB • 349
consistency checking • 341
CONTAINS operator • 385
Control Area statistics SHOW VSAM • 510
control information • 571
Control Interval data display SHOW VSAM • 209
control record • 315
control statements for panels • 152

conversations APPC • 426
concurrent • 426
security • 441
types • 427

correlating commands and results • 42
corruption (tables) • 83
CPC • 391
creating an NDB • 327
cursor position controls Panel Services • 137
cursor position hierarchy Panel Services • 138
cursor select key • 132

D

DASD space • 340
data

deleting in an NDB file • 335
integrity • 248
records • 316
types • 318
variable output • 108

data buffers
controlling • 484
purging • 488
receiving • 486
sending • 484

DATA keyword • 349
data sets

defining journal • 342
offline processing • 220
VSAM • 323

DATE data • 318
DBCS • 66, 69

data streams (in UDBs) • 215
device support • 69

DBMS access • 236
deactivating a receiver in PPI • 479
DEALLOCATE command • 189, 220
deallocating UDBs • 220
DEBUG command • 263
debugging BCI NCL procedures • 576
debugging codes PPI • 497
debugging NCL procedures

breakpoints in procedures • 255
debug session • 258

Index 591

debugger definition • 255
execution status SHOW NCL • 260
listing nesting levels • 263
modifying variables and MDOs • 263
procedure breakpoints • 260
sample debug session • 263
scope definition • 255
security • 256
session definition • 255
source code, displaying • 263
starting and stopping NCL debug • 258
SYSPARMS CMDREPL • 257
trace messages • 74
trace output viewing • 263
variables and MDOs, displaying • 263

default panel field characters • 110
defining fields • 313, 355
DEFMSG command

EDS events • 228
message definition table • 228

DEFTRANS command LINK operand • 435
deleting

an NDB • 334
data in an NDB file records • 335

delimited format files • 213
delimiters • 348, 502
DELLINK command • 440
DELOPSET command • 438
dependent

command execution • 42
message delivery • 45
processing environment • 38
request queue • 46, 149
response queue • 42

designator characters Panel Services • 132
directing messages to the operator NCL

comments • 55
disconnecting from an NDB • 350
displaying

commands (echoing) • 57
file details • 209

distribution • 581
DLT defining • 437
documentary messages • 575

domain ID location • 315
duplicate keys VSAM alternate indexes • 200
dynamic

preparsing Panel Services • 138
tailoring of panels • 108
updating of screens • 147

Dynamic Link Table defining • 437

E

EASINET • 349
procedure • 225
releasing resources • 208
terminal control • 225

ECB waiting • 490
END command • 30
end-of-file condition • 54
environment dependent processing • 38
errors

display (#ERR statement) • 155
how to find • 341
in Panel Services procedures • 118
messages • 51
tracing cause PPI • 495

exclusive access ensuring • 322
EXCLUSIVE keyword • 349
EXEC command • 29, 33, 36, 39
executing procedures • 29
execution concepts • 33
exiting OCS procedure flushing • 30
explicit

assignment • 75
process execution • 39

expression scan • 380
extensions to &CALL • 236
extracting

keys • 219
MDO data • 274

F

fast loading • 360
field

characters in panel definition • 109
definition • 355
determining the presence of • 356

592 Network Control Language Programming Guide

null • 383
separators • 188
type on panel • 110

field descriptor list • 581, 584
field-to-field comparison • 383
fiellevel

internal validation on panels • 121
justification • 127

file
IDs • 207
processing releasing resources • 208
return code • 192
stripping • 220

fill characters • 73
filtering messages VTAM to PPOPROC • 228
FLOAT data • 318
FLUSH command • 30
forcing subsystem to stop • 239
formats

named • 355
PARMLIST • 237

forward recovery NDB • 312
free-form text • 348
FS-HOLD mode (OCS panels) Panel Services •

145
full-screen dialog • 581
function keys

interception on panels • 133
mapping • 133

G

generic
data set retrieval • 212
reads (UDB files) • 197

global
tables definition • 80
variables • 54

group message processing
MSGPROC • 233
PPOPROC verbs • 229

H

help facilities constructing • 56
heterogeneous networking • 425

HEX data • 318
highlighting

fields in panels • 109
keywords in comments • 56
support Panel Services • 155

histogram • 358

I

IDCAMS UDB initialization • 236
IDCAMS utility interface to • 190
imbedded blanks in panel fields • 121
implicit

assignment • 77
process execution • 39

indexes • 340
indicating error on panel input • 118
initializing

input fields on panels • 151
UDBs • 190

inline command execution • 41
input command line • 574
input fields

field type • 110
format controls on panels • 143

input padding panel design • 130
interactive panels • 147
intercepting function keys in panels • 133
intercepting messages

VTAM PPOPROC • 227
internal

environments • 36
validation • 155

INTQ command • 45
isolating messages • 46
ISR PPOPROC related messages • 227
issuing commands from NCL • 41

dependent execution • 42
inline • 41
message delivery rules • 42

J

JCL
conditional statements • 570
return codes • 570, 575, 578

Index 593

journal
control record • 315
data record • 316
data sets • 345
file deleting data in an NDB • 335

journaling • 323
justification of panel output • 127

K

Kanji script • 69
KEY-FIELDS • 355
keys

base cluster • 198
length increasing • 340
records • 316
structures in alternate indexes • 201
value • 358

key-sequenced data set (KSDS) • 312
keywords • 382

DATA • 349
EXCLUSIVE • 349

L

label statements • 58
duplicate • 60
minimizing • 61
variables • 59

labels
duplicates • 60
minimizing • 61
rules for definition • 58
variables • 59

leading blanks in an NCL statement • 52
light pens for panel input • 132
LIKE operator • 385
limit on scanning • 380
link level security (APPC) • 440
LINK START command • 444
LIST command • 31
listing procedures • 31
load library • 573
LOAD MODE • 340
loading

fast • 340

maps • 273
Local Shared Resource (LSR) pool • 510
lock access to record • 322
locking tables • 83
LOGFILES parameter group • 224
logging off • 573
Logical Screen Manager (LSM) • 106
LOGP user ID • 40
LOGPROC procedure

background environment • 40
background logger • 234

LSR pool statistics displays SHOW VSAM • 209
LU type 6.2

option sets • 428
sessions • 426

M

macros $NMNCPL • 237
managing I/O contention on panels • 149
manipulating MDO data • 274
mapped conversations (APPC) • 427
mapped formats • 186

file processing • 185
files • 213

mapping concepts (Mapping Services) • 270
using maps • 274

Mapping Services
ASN.1 • 277
assigning data to component • 285
assigning data to MDOs • 284
attaching maps • 274
creating MDOs • 283
data type checking • 293
data types • 306
deleting MDOs • 283
loading maps • 273
map management • 213
Mapped Data Objects • 267
mapping concepts • 270
mapping support • 272
MDOs • 278
NCL processing conventions • 278
overview • 267
processing • 268

594 Network Control Language Programming Guide

querying MDO components • 289
return codes • 278
storing and transferring data • 268
using maps • 274

mapping support connection • 273
MCT defining • 439
MDO data types • 293

BIT STRING type • 295
BOOLEAN type • 294
conversion • 306
ENUMERATED type • 301
GeneralizedTime type • 304
GeneralString type • 306
graphic-oriented source types • 308
GraphicString type • 305
HEX STRING type • 298
IA5String type • 303
INTEGER type • 294
NULL type • 298
numeric-oriented source types • 302
NumericString type • 302
OBJECT IDENTIFIER type • 299
ObjectDescriptor type • 299
OCTET STRING type • 297
PrintableString type • 302
REAL type • 300
TelexString type • 303
transparent source types • 310
UTCTime type • 304
VideotexString type • 303
VisibleString type • 305

MDOs • 186
APPC • 211
assigning data to • 284
assigning data to component • 285
behavior (Mapping Services) • 278
components • 267
creating • 283
data format • 267
data transfer • 267
data type conversion • 306
data types • 308
definition • 268
deleting • 283

extracting data • 274
input operations • 281
manipulating data • 274
naming • 273
output operations • 282
querying MDO components • 289
receiving data using PPI • 464
return codes • 278
SEQUENCE OF type • 288
SEQUENCE type • 288
SET OF type • 286
SET type • 286
sourcing data • 273
transferring between procedures • 272
using the &ASSIGN verb • 283

message delivery rules • 42
message filtering

PPOPROC • 228
VTAM messages • 229

message interception • 228
message processing group messages

MSGPROC • 233
message profiles • 226

variables • 226
messages

directing to operator using NCL comments •
56

MSGPROC errors • 232
queuing to a process • 45

minor resource name • 248
monitoring messages sent to OCS windows •

233
MSGPROC procedure • 40

monitoring NDB • 339
monitoring OCS MSGPROC • 231
MSGPROC

designing procedures • 233
flushing the procedure • 234
messages • 233
OCS message interception • 231
testing • 234
verbs • 232

multiple
assignment operations • 78

Index 595

file support • 188
substitutions • 76
system access • 341
target variables • 78

N

named formats • 355
national language enabling (NDB CREATE) • 331
NCL • 31

APPC programming facilities • 391
arithmetic • 63
assigning values to variables • 63
assignment statements • 63
branching conditional • 54
built-in functions • 62
command statements • 64
comment lines highlighting • 56
comment suppression &CONTROL NOCMD •

57
comments within code • 55
condition testing • 54
conditional branching • 54
conventions • 54
creating procedures • 27
debugging procedures • 263
divide by zero • 101
ending a procedure • 54
error messages • 51
nesting of procedures • 54
null statements • 51
number classification for arithmetic • 96
private programs execution from OCS • 223
procedure library storage • 26, 33
process • 49
process identifier (NCLID) • 35
processing • 35
read verbs • 515
real number arithmetic • 96
regions • 48
ROF • 43
signed numbers • 103
statement • 64
substitution and expressions • 103
syntax • 54

system level procedures • 40
table manipulation • 79
uncontrolled looping • 30
variables • 53
verbs • 61
VSAM techniques • 505
word size restrictions • 54

NCL procedure debugging, controlling execution
of processes • 259
BREAKPOINT command • 259
breakpoints • 260
DEBUG BREAKPOINT command • 260
HOLD command • 259
sample session • 262
STEP command • 259

NCL procedures accessing PPI facilities from •
465

NCL procedures, debug commands
DEBUG BREAKPOINT • 258, 260
DEBUG CLEAR • 261
DEBUG DISPLAY • 263
DEBUG HOLD • 259
DEBUG LIST BREAKPOINTS • 261
DEBUG MODIFY • 263
DEBUG RESUME • 261
DEBUG SET NCLTRACE= • 263
DEBUG SET NEWHOLD= • 261
DEBUG SOURCE • 263
DEBUG START • 258
DEBUG STEP • 261
DEBUG STOP • 258
DEBUG TRACE • 261

NCL, debug facilities • 255
external control of process • 257
external to NCL procedure • 257
observing process execution • 257
security • 256
specifying debug criteria • 255

NCLCHECK command • 27
NCLTEST command • 28
NDB

access while active • 188
accessing • 349
adding records to • 350

596 Network Control Language Programming Guide

backing up • 338
checking for consistency • 341
closing • 313
creating • 327
current state of • 351
deleting • 353
deleting records • 353
internal reorganization • 340
journal • 323
monitoring • 339
multiple access • 341
physical attributes • 340
reload • 371
response codes • 545
restoring • 338
retrieving records • 354
security • 315
structure • 315
unload/reload • 355
updating records • 351

NDB CREATE command LANG= operand • 331
nested procedures • 66
nesting levels • 123

&SYSMSG system variable • 123
networking heterogeneous • 425
NL character set support creating language

specific NDB using NDB CREATE • 342
non-printable data • 214
normalizing function keys on panels • 133
null fields • 320, 383

how to code • 351
on panels • 110

NUMERIC data • 318

O

OCS • 30
exiting procedure flushing • 30
message interception • 231
MSGPROC procedure • 231
panel displays • 145
windows • 225

OCST defining • 438
online editor • 106
online editor Panel Services • 106

option sets LU6.2 (APPC) • 428
output fields on panels • 110

P

padding output panel design • 127
panel characteristics • 584
panel definition • 584
panel definition field character • 158
panel design

dynamic alteration • 138
input padding and justification • 130

panel library path definition • 144
panel preparsing • 108
panel processing options #OPT panel control

statement • 174
panel retrieval • 144
Panel Services • 105

#ALIAS statement • 153
#ERR statement • 155
#FLD statement • 158
#NOTE statement • 174
#OPT statement • 174
#TRAILER statement • 182
&CONTROL PANELRC and &RETCODE • 116
&PANEL verb • 106
altering panel designs dynamically • 138
asyncronous panels • 147
changing panels • 106
color in panels • 108
controlling cursor position • 137
cursor location • 136
cursor positioning hierarchy • 138
cursor select • 132
default field characters • 110
defining field attributes • 108
dependent request queue • 149
designator characters • 132
designing screen display • 105
displaying panels on OCS windows • 145
dynamic PREPARSE option • 141
field character • 109
field types • 110
finding out which fields have changed • 126
fixed data in panels • 108

Index 597

function keys • 133, 142
handling errors • 118
hardware restrictions • 133
hexadecimal preparse • 108
highlighting in panels • 108
implementing screen display • 106
indicating error in input on pane • 118
input fields • 143
input padding and justification • 130
input/output contention • 152
internal validation of fields • 110
Logical Screen Manager (LSM) • 106
panel testing facility • 105
PREPARSE facility • 141
split-screen facilities • 106
static PREPARSE option • 141
synchronous panel displays • 107
time-out intervals • 114
variable data in panels • 108
waiting for input • 149

panel testing • 105
parallel sessions links • 440
parameter definition • 68
parameter groups LOGFILES • 224
partial keys • 206
partitioned data sets (OS/VS)

NCL procedure library • 33
NCL procedure library storage • 26

paths alternate indexes • 200, 201
peer protocol • 426
performance monitoring • 340
persistent global variables • 68
physical terminal dimensions Panel Services •

135
PPI

accessing • 465, 467
ACSB and TCB addresses, obtaining • 476
application • 458
checking status • 473
controlling • 484
data buffers • 484
deactivating a receiver • 464
debugging codes • 497
defining a process as a receiver • 463

determining status • 462
facilities • 458
interface functions • 460
making calls • 467, 471
NCL &PPI verb • 461
receiver programs • 474
receiving data • 405
request codes • 467
sender and receiver IDs • 468
sending a generic alert • 482
sending data to receive • 463
Subsystem Interface (SSI) Tivoli NetView •

458
tracing cause of error • 495
unique sender or reciever ID, obtaining •

491
PPO interface receiving unsolicited messages •

224
PPOP user ID • 40
PPOPROC

messages • 229
prerequisites • 231
procedures • 229
virtual user environment • 278

preparsing on panels • 138
column alignment • 141
dynamic • 141
static • 141
things to consider • 142

primary resource name • 250
private programs execution from OCS • 223
procedure definition • 33
procedures

canceling • 30
concurrent execution • 37
creating • 27
definition • 33
EASINET • 225
filtering VTAM messages • 228
invoking • 29
library • 33
listing • 31
LOGPROC • 224
MSGPROC • 224

598 Network Control Language Programming Guide

naming conventions • 27
nesting • 27
PPOPROC • 230, 231
preloading • 27
retention queue • 28
serial execution • 36
storage • 26
testing • 28
uncontrolled looping • 30

process
communicating between processes • 45
execution • 39
identifier (NCLID) • 35
processing region • 35
table definition • 80

processing
environments • 36, 38
region • 35
windows • 36

Q

queuing messages to a process
dependent request queue • 46
dependent response queue • 47

quoting • 348

R

receiver
ID • 491
programs • 474
receiving data using PPI • 464

record
adding • 350
control • 315
count • 358
data • 316
disjoint • 321
disjoint types • 371
field definition • 316
first in any NDB • 315
how to delete • 353
ID • 317
journal control • 315
journal data • 316

keyed • 316
lock • 322
retrieve from an NDB • 354
RID-sequence key • 316
size display SHOW VSAM • 209
updating • 351

reformatting VTAM messages using MSGPRO •
233

region use (APPC) • 444
regional table definition • 80
relative key position (RKP) • 198
reloading • 371
REPLINK command • 437
REPOPSET command • 438
reports unmapped format files

generation • 187
routing to JES SYSOUT • 187

request codes PPI • 468
request discipline • 47
requests &CALL • 235
reserved words • 382
resource

access synchronizing • 248
definition • 248
group • 249
locks • 252
name • 250

resources and resource groups
access lock (&LOCK verb) • 251
access waiting • 252
altering lock status (&LOCK ALTER) • 252
controlling access to data • 248
controlling access to resources • 248
controlling access to UDBs • 248
definition • 248
lock • 251
minor name • 250
naming conventions • 251
naming hierarchy • 250
primary name • 250
resource lock • 249
resources as semaphores • 254
synchronizing access • 254

response

Index 599

codes • 545
discipline • 47

restoring an NDB • 338
retention queue (procedures) • 28
retrieval sequential • 359
retrieving

records • 197, 354
vartable entries • 87

return codes • 577, 578
return codes panels

&CONTROL PANELRC • 116
RID-sequence key records • 316
ROF

LOGPROC user ID • 395
messages • 44, 48
NCL processes • 43
session • 44
using INTQ across a session • 48

routing commands • 43
RPB constructing • 468

S

scan
expression • 377
limits • 380
processing • 377
tests • 380

screens Panel Services
sizes • 135
splitting • 133
swapping • 133

security • 341
for APPC links • 440
NCL debugging procedures • 257

selector pen detectable fields • 110
sender ID

specifying in PPI • 468
unique using PPI • 491

sending data buffers using PPI • 484
sending in PPI

data • 463
generic alerts • 463

sequential insert strategy (SIS) • 505
sequential retrieval

data sets • 212
sequences • 359

serial execution of processes • 36
session establishment (APPC) • 447
sessions APPC • 426
shared panel libraries • 144
shared tables • 80

updating • 83
SHOW EXEC command • 31
SHOW LOCKS command TEXT= operand • 253
SHOW NCL command • 49
SHOW SUBSYS command • 239
SHOW UBD command • 209, 510
SHOW UDBUSER command • 209
SHOW USERS comman • 35
SHOW VSAM command • 209, 510
single session links • 439
sourcing MDO data • 273
SPD fields use in panel design • 132
special characters protecting • 383
START command • 29, 33
starting an NCL procedure • 33
statement continuation • 52, 54

continuation character • 54
deactivation &CONTROL NOCON • 52
reactivation &CONTROL CONT • 52

statement labels • 55
statistics

how to obtain • 339
keyed field • 358

stem name &ASSIGN • 273
subsets unloading • 371
SUBSYS DEFINE command • 237
SUBSYS facility • 235

callback API • 243
PARMLIST format • 237
reloading the program • 239
sending parameter lists • 237
subsystems • 237
using • 236
writing a program • 240, 242

SUBSYS FORCE command • 239
SUBSYS RELOAD command • 239
subsystems

600 Network Control Language Programming Guide

defining • 238
deleting • 239
displaying status • 239
reloading the program • 239
sending parameter lists • 237
starting • 238
stopping • 238

synchronizing access to resources • 248
synchronous panel

displays • 107
operations return codes • 116

syntax • 54, 502
errors in assignment statements • 75
free-format • 502
rules • 51

SYSOUT
as an ESDS UDB • 191
formatting • 193

SYSPARMS command
JRNLPROC operand • 323
LOGPROC operand • 40
MENUPROC operand • 39
NCLGLBL operand • 67
PPOPROC operand • 230

system level procedures • 223
EASINET procedure • 225
environments • 514
LOGPROC • 514
message handling and processing • 515
message profile • 517
message profile variables • 517
MSGPROC procedure • 40
PPOPROC procedure • 230, 231
user ID considerations • 234
verbs to retrieve messages • 514

system variables
&APPC • 395
&CURSCOL • 136
&CURSROW • 136
&FILERC • 192
&INKEY • 133
&LUCOLS • 135
&LUROWS • 135
&RETCODE • 462

&SYSMSG • 123
&VSAMFDBK • 192
&ZCURSFLD • 136
&ZCURSPOS • 136
&ZFDBK • 462
&ZJRNALT • 323
&ZMDOCOMP • 278
&ZMDOID • 278
&ZMDOMAP • 278
&ZMDONAME • 278
&ZMDORC to check map connection • 273
&ZMDOTAG • 278
&ZPPI • 462
&ZPPINAME • 462
definition • 65

T

table manipulation • 79
tabulated data • 73
tailoring $USERBCI • 576
TCB address using PPI • 476
TCT defining • 434
terminal control EASINET • 225
testing NCL procedures • 28

NCLTEST command • 28
using the NCL debug facility • 255

testing PPOPROC • 230
time-out

APPC • 450
panel • 114

toggling input fields on panels • 143
tokenized data • 211
TPN specifying • 434
trace messages • 74
tracing cause of error PPI • 495, 497
trailer panel control statement • 182
trailing blanks • 502

on panel fields • 121
transaction programs • 426
trigger messages on panels • 150
TSO command interface • 584

U

UDB

Index 601

alternate indexes • 199
availability • 205
base cluster keys • 199
base key definition • 199
compared with NDB • 312
DBCS data streams • 215
deallocate (UDBCTL) • 512
display details (SHOW UDB) • 510
dynamic allocation • 189
generic read • 197
initializing • 190, 191
performance • 191, 511
preparing to use • 190
record retrieval • 197
restrictions • 198
time stamp • 199
unmapped data conversion • 216
updating records • 194
VSAM user database • 188

UDBCTL command • 191, 205
UDBs

controlling access • 248
controlling performance • 511
denied access • 248
locked data • 248

undefined labels • 59
underscore characters on panels • 142
unload/reload an NDB • 365
unmapped format file support • 186
unmapped mode processing • 186
unrecoverable open error • 573
unsolicited messages • 40

filtering • 229
on MAI sessions MSGPROC • 233
VTAM • 224

unusable data sets • 190
updating records

NDB • 351
UDB • 194

User Access Maintenance Subsystem (UAMS) •
571

user command exit • 570
user comments in panel definitions • 126
user correlator • 87

considerations • 80, 83
user ID

considerations • 234
LOGP • 40
PPOP • 40
virtual • 36

User Services • 574, 576
user variables

&PPIDATALEN • 462
&PPISENDERID • 462
definition • 66
passing across nested procedures • 66

using with MDOs
extensions • 236
requests • 235
using with SUBSYS facility • 236
using without SUBSYS facility • 235

V

validation • 341
variable level justification in panels • 129
variables

aligning • 73
global • 67
multiple target • 77
passing to another procedure • 54
substitution • 53, 69
types • 66
using in assignment statements • 76

VARTABLES
facilities • 80
reading sequentially • 87
scope • 80

verbs
&APPC • 393
&ASSIGN • 77
&CONTROL • 133
&FILE • 130
&FILE ADD • 192
&HEXEXP • 214
&HEXPACK • 216
&INTCLEAR • 38
&INTCMD • 38
&LOCK • 235

602 Network Control Language Programming Guide

&LOOPCNTL • 30
&MSGCONT • 233
&MSGDEL • 233
&MSGREAD • 233
&MSGREPL • 233
&PANEL • 107
&PARSE • 78
&PPI • 461, 465
&RETURN • 66
&SETVARS • 78
&VARTABLE • 82, 88
&WRITE • 56, 74
MSGPROC • 40, 232, 514
PPOPROC • 230, 231
types • 61

VFS • 313
virtual user environment • 224

PPOPROC • 224
virtual user IDs • 36

background logger • 35
background monitor • 35

VSAM
alternate indexes • 188, 200
buffer allocations storage shortages • 191
duplicate keys • 200
file formats • 186
IDCAMS BLDINDEX function • 506
UDBs • 188

VSAM techniques • 505
accessing multiple UDBs • 508
automatic verification and loading • 505
data set positioning • 508
displaying file information • 510
efficient processing • 511
generic retrieval • 508
I/O buffers • 507
loading a KSDS • 506
Local Shared Resource (LSR) pool • 209
offline processing • 220
releasing file processing resources • 208
RPL handling • 507
sequential insert strategy (SIS) • 505
UDB performance • 511

VTAM

access control block • 571, 581
domain • 570, 581
filtering messages • 228, 229
message definition table PPOPROC

procedure • 228
PPO interface • 224
reformatting messages using MSGPROC •

233
unsolicited messages PPOPROC procedure •

227

W

wait-for-input condition • 149
waiting on an ECB • 490
windows

bidding • 146
competition • 146
OCS message monitoring • 225
OCS traffic handling • 225

words reserved • 382
writing SUBSYS programs • 242

in high-level languages • 242

	CA SOLVE:Access Session Management Network Control Language Programming Guide
	Contents
	1: Introduction
	About this Guide
	What You Need to Know Before Using NCL
	Related Documentation

	2: About Network Control Language
	What Is Network Control Language (NCL)?
	Create NCL Procedures
	Check NCL Syntax
	Test NCL Procedures
	Test in Production and Testing Environments

	Debug an NCL Procedure

	Invoke and Cancel NCL Procedures
	Invoke NCL Procedures
	Cancel NCL Procedures

	Exit OCS During Execution
	Control Runaway Loops
	List Procedure Names
	List the Contents of NCL Procedures

	3: NCL Concepts
	Where Does NCL Execute?
	What Is an NCL Procedure?
	What Is an NCL Process?
	Nesting
	NCL Process Identifier

	NCL Processing Region
	NCL Processing Environment

	Execute NCL Processes Serially
	Execute NCL Processes Concurrently
	Dependent Processing Environment
	&INTCMD Verb
	Explicit NCL Process Execution
	Implicit NCL Execution
	System Level Procedures
	MSGPROC Procedure

	Issue Commands from an NCL Process
	Inline Command Execution
	Dependent Command Execution
	Review of Message Delivery Rules

	NCL Processes and the Remote Operator Facility (ROF)
	Message Flow on a ROF Session

	Communication Between Processes
	INTQUE Command
	Dependent Request Queue
	Request and Response Disciplines
	INTQUE Across ROF Sessions

	Scope of the NCL Processing Region
	Find Out Which NCL Processes Are Executing

	4: NCL Statement Types and Syntax
	NCL Statements
	Format of NCL Statements
	Statement Continuations
	Variable Substitution

	NCL Conventions and Syntax
	Comments in NCL Procedures
	Comments on NCL Statements
	Displayable Stand-alone Comment Lines
	Highlighted Key Words in Comment Lines
	Non-displayable Stand-alone Comment Lines
	Suppression Character

	Label Statements
	Label Variables
	Undefined Labels
	Duplicate Labels
	Minimize Labels

	Verb Statements
	Built-in Function Statements
	Assignment Statements
	Arithmetic

	Command Statements

	5: Variables, Substitution, and Assignment
	What Is a Variable?
	Variable Types
	System Variables
	User Variables
	Global Variables
	Persistent Global Variables

	Parameters

	DBCS Device Support
	Variable Substitution
	Undefined Variable Substitution

	Complex Variable Substitution
	Align Substitution Data
	Lowercase Data
	Debugging Procedures
	Set Variables to a Particular Value
	Explicit Assignment: Assignment Statement
	Complex Variables in Assignment Statements
	Implicit Assignment: Using &ASSIGN
	Implicit Assignment: Using Other NCL Verbs
	Uppercase and Lowercase Variables
	DBCS Support and Lowercase Data
	Variables and Storage Usage

	NCL Table Manipulation
	Vartable Facility
	&ZFDBK Values
	&VARTABLE Manipulation Facilities
	Shared Table Updating
	Retrieval Techniques
	OPT=IGEN

	&VARTABLE Syntax Descriptions
	Mirrored Vartables
	Differences Between Mirrored and Standard Vartables
	Update Mirrored Vartables
	AOM Attributes of Mirrored Vartables

	6: Arithmetic in NCL
	About Arithmetic in NCL
	Integer Arithmetic
	Real Number Arithmetic
	&CONTROL REAL
	Comparisons With Real Numbers

	Arithmetic Expressions
	Arithmetic Operators
	Divide (REAL Arithmetic)
	Divide Quotient (INTEGER Arithmetic)
	Divide Remainder (INTEGER Arithmetic)
	Divide by Zero
	Precedence of Operators
	Parentheses to Control Evaluation Order

	NCL Substitution and Expressions
	Signed Numbers
	Format Numbers

	7: Designing Interactive Panels (Panel Services)
	About Panel Services
	Logical Screen Manager
	Create or Change Panels
	Invoke Full-screen Panels
	Synchronous and Asynchronous Panel Displays

	Fixed and Variable Data in Panels

	Panel Design
	Design Guidelines
	Field Characters
	Field Types
	Sample Panels
	Override the Input Attribute
	Control How Long a Panel is Displayed

	Analyze Panel Input
	Monitor Panel Return Codes
	Handle Errors
	Internal Validation
	Automatic Internal Validation
	Advanced Internal Validation

	Find Out Which Input Fields Have Changed
	Output Padding and Justification
	Field Level Justification
	Variable Level Justification

	Input Padding and Justification
	Process with Light Pens/Cursor Select
	Mix SPD Fields with Normal Input Fields
	Hardware Restrictions

	Intercept Function Keys
	Panels on Different Screen Sizes
	&LUROWS Variable
	&LUCOLS Variable
	&CURSCOL Variable
	&CURSROW Variable
	Determine the Field Location of the Cursor

	Control Cursor Positioning
	Cursor Positioning Hierarchy

	Dynamically Alter Panel Designs (PREPARSE)
	Dynamic PREPARSE Option
	Static PREPARSE Option
	Considerations When Using PREPARSE
	Display Function Key Prompts

	Control the Formatting of Input Fields
	Allow Long Field Names in Short Fields

	Retrieve Panels from Panel Libraries
	Display Panels on OCS Windows
	NCL Processes Competing Against OCS for the OCS Window
	Competition Between NCL Processes for an NCL Environment Window

	Asynchronous Panels
	Asynchronous Operation Concepts
	Invoke an Asynchronous &PANEL Operation
	Waiting for Input
	Coordinate Other Processing with Input Notification

	Control Input Field Initialization
	Manage I/O Contention

	Panel Control Statements
	#ALIAS Control Statement--Define Alternative Name for Input Variables
	#ERR Control Statement--Define Action Taken During Error Processing
	#FLD Control Statement--Define or Modify a Panel Definition Field Character
	#NOTE Control Statement--Allow User Comments in a Panel Definition
	#OPT Control Statement--Define Panel Processing Options
	#TRAILER Control Statement--Place Lines at Screen End

	8: NCL File Processing
	UDB File Formats
	Mapped Format Files
	Default Map
	Other Maps

	Unmapped Format Files
	Print (Using Unmapped Format File Support)

	Delimited Format Files
	Multiple File and Alternate Index Support

	Work with UDBs
	Allocate UDBs
	Prepare to Use a UDB
	UDB Initialization
	Initialization of KSDS UDBs
	Initialization of ESDS UDBs
	Write to SYSOUT as an ESDS

	Control UDB Performance and Resource Usage
	Add Records to a UDB
	SYSOUT Considerations
	Format SYSOUT Output
	Update Records in a UDB
	Delete Records from a UDB
	Retrieve Records from a UDB
	Restrictions When Using UDBs
	Create UDBs with Alternate Indexes
	VSAM Considerations for Alternate Indexes
	Key Structures and Alternate Indexes
	Retrieve Data Using Alternate Indexes
	Control UDB Availability

	Work with Files
	Logical File Identifiers
	Release File Processing Resources
	Display File Information
	Specify the File Processing Mode
	Specify the File Key

	Work with Data
	Data Set Positioning and Generic Retrieval
	Mapped Format Files: Data Representation
	Unmapped Format Files: Data Representation
	DBCS Considerations When Using Files

	&FILE GET Statement and Unmapped Format UDBs
	Data Conversion and Unmapped Format UDBs
	Key and Data Differentiation
	Key Extraction Options
	Update Restrictions on Alternate Indexes

	Offline Processing of Data Sets
	Back Up Online Data Sets

	9: System Level Procedures
	System Level Procedures
	Activity Log
	VTAM Messages
	EASINET Terminal Control
	OCS Window Traffic Handling

	Message Profile Concept
	Intercept Solicited and Unsolicited VTAM Messages (PPOPROC Procedures)
	Filter Messages Seen by PPOPROC
	Modify the Message Definition Table: DEFMSG Command
	Message Filtering: Solicited Messages
	Message Filtering: Unsolicited Messages
	Design a PPOPROC Procedure
	Messages from PPOPROC
	PPOPROC Statements
	Test PPOPROC
	PPOPROC Prerequisites

	Intercept OCS Messages (MSGPROC Procedures)
	MSGPROC Statements
	Design MSGPROC Procedures
	Messages from MSGPROC
	Test MSGPROC

	User ID Considerations for System Level Procedures

	10: Implementing User Programs
	About the SUBSYS Facility
	Use &CALL Without SUBSYS
	Use &CALL With SUBSYS
	Extensions to &CALL
	Uses of SUBSYS

	Send Parameter Lists to the Subsystem
	Control Subsystems
	Define a Subsystem
	Start a Subsystem
	Stop a Subsystem
	Force a Subsystem to Stop

	Delete a Subsystem
	Reload the Program
	Display the Status of a Subsystem

	Write a SUBSYS Program
	Subsystem Program Considerations
	Write a Subsystem Program in High-level Languages

	SUBSYS Callback API
	Function Code 0--Queue a Message to the INTCMD Environment of an NCL Process
	Function Code 4--Send a Message to an NCL Process
	Function Code 8--Send a Message to MONITOR Receivers
	Return Codes

	11: Synchronizing Access to Resources
	Use NCL to Synchronize Access to Resources
	Resources and Resource Locks
	Resource Groups
	Primary Names
	Minor Names

	Resource Name Hierarchy
	Resource Naming Conventions
	&LOCK Verb
	Wait for Access to a Resource
	Alter the Status of a Resource Lock
	Alter the Status from EXCL to SHR
	Alter the Status from SHR to EXCL
	WAIT Operand

	Associate Text with a Resource Lock

	Resources as Semaphores

	12: NCL Debug Facility
	Overview
	Security
	NCL Debug Facilities
	NCL Debug Facility
	Start and Stop an NCL Debug Session

	Control the Execution of NCL Processes
	Statement Breakpoints
	Verb Breakpoints
	Variable Breakpoints
	Procedure ENTRY Breakpoints
	Procedure EXIT Breakpoints
	BREAKPOINT Command
	Sample Debug Session
	Display and Modify the Contents of NCL Variables
	List Procedure and Subroutine Nesting Levels
	Display the Executed Source
	Receive NCL Trace Output

	13: About Mapping Services
	What Is Mapping Services?
	Mapping Services Processing
	MDOs
	Maps
	NCL Procedures

	Mapping Concepts
	Data Sources
	Naming
	Transfer MDOs Between Nested NCL Procedures

	Mapping Services, Mapping Support, and NCL Processing
	Connection to Mapping Support
	Sourcing Data
	Manipulate and Extract Data
	Use a Map in NCL Processing

	14: Using Mapping Services
	Overview
	MDO Behavior and NCL Processing Conventions
	Input Operations on an MDO
	Output Operations from an MDO

	&ASSIGN Verb
	Create and Delete MDOs
	Assign Data into an MDO
	Assign into/from a Single MDO Component
	Assign into/from Multiple MDO Components within a SEQUENCE or SET Type
	Assign into/from Components within a SEQUENCE OF or SET OF Type

	Query MDO Components
	NCL Reference, Type Checking, and Data Behavior
	BOOLEAN Type
	INTEGER Type
	BIT STRING Type
	Standard BIT STRING Access
	Boolean BIT STRING Access

	OCTET STRING Type
	HEX STRING Type
	NULL Type
	OBJECT IDENTIFIER Type
	ObjectDescriptor Type
	REAL Type
	ENUMERATED Type
	NumericString Type
	PrintableString Type
	TeletexString Type
	VideotexString Type
	IA5String Type
	UTCTime Type
	GeneralizedTime Type
	GraphicString Type
	VisibleString Type
	GeneralString Type

	Type Conversion for MDO Assignment
	Graphic-oriented Source Type
	Numeric-oriented Source Types
	Transparent Source Types

	15: NDB Concepts
	What Is an NDB?
	Work with NDBs
	Uses of NDBs
	Differences Between NDBs and UDBs
	NDB Types

	NDB Structure
	Control Record
	Journal Control Record
	Journal Data Records
	Field Definition Records
	Key Statistics Records
	Key Records
	RID-Sequence Key Records
	Data Records

	Record ID
	RID Reuse

	Alerts for VSAM Monitoring
	NDB Data Formats
	Null Values and Null Fields
	Rules for Null Fields

	NDB Transaction Management: Database Protection
	NDB Journaling
	Continuous Availability
	NDB Recovery

	How to Respond to an Alert for File Size or File Full
	Fix a Corrupted NDB

	16: NetMaster Database Administration
	How to Create an NDB
	Define VSAM Data Set
	Calculate Key Length
	Calculate Record Length
	Allocate the VSAM Data Set
	Open the VSAM Data Set
	Create the NDB
	Start the Database
	Insert Field Definitions
	Load Initial Data

	Delete an NDB
	Delete All Data in an NDB

	Alter Field Definitions in an NDB
	Add Field Definitions
	Delete Field Definitions
	Update a Field Definition

	Back Up an NDB
	Restore an NDB
	Monitor NDB Activity
	Monitor NDB Performance
	Improve Performance by Using LOAD MODE
	Check an NDB for Consistency

	Multiple System Access to an NDB
	How to Implement NDB Journaling
	Define Two Journal Data Sets
	Allocate Data Sets to the Product Region
	Make Duplicates of the NDBs
	Add the Duplicates to the Batch Forward Recovery JCL
	Start the NDBs
	NDB Journal Swapping

	17: Using &NDB Verbs
	Relationship Between &FILE and &NDBxxx Verbs
	Protect Your Data Values with &NDBQUOTE
	Preserve Lowercase Data
	Define and Delete Fields in an NDB

	Access an NDB
	EASINET Considerations
	Close an NDB

	Work with NDBs
	Add Records to an NDB
	Update Records in an NDB
	Delete Records from an NDB
	Retrieve Records from an NDB
	Define Fields to Return (&NDBFMT)
	Determine Which Fields Are Present
	Retrieve Records Directly by RID
	Retrieve Records by Key Field
	Read Sequentially by RID
	Retrieve Records Sequentially by Key Field
	Retrieve Records Indirectly by Key Field Stored in Another Record
	Retrieve Keyed Field Statistics (Histogram)

	Notes on Sequential Retrieval
	KEEP=YES on &NDBSEQ
	&NDBSEQ RESET
	&NDBGET DIR= and SKIP=
	Read by Sparse Keys

	Obtain Information About an NDB
	Change NDB NCL Processing Options
	Put It All Together--Unload or Reload an NDB
	Define an Unload File
	Open the Database and Output Unload File
	Unload Database Level Information
	Obtain and Unload Field Level Information
	Build a Format for Reading Data
	Define the Sequence for Reading
	Unload the Data
	Unload Subsets Using Sparse Keys
	Reload an NDB from an Unload File
	Open the Database and the Input Unload File
	Check Database Attributes
	Build Field Definitions
	Load the Data

	18: Using &NDBSCAN Statements
	Scan Processing
	Display the Generated Scan Action Table
	Process Scan Results
	Differences Between &NDBSCAN Sequences and &NDBSEQ Sequences

	Control &NDBSCAN Resource Usage
	Scan Expressions
	Reserved Words
	Null Fields
	Field to Field Comparisons
	Use &NDBQUOTE to Protect Special Characters
	Search for Lowercase Data
	CONTAINS
	LIKE
	Use the Results of a Previous &NDBSCAN

	SQL-like Operators
	Efficient Use of &NDBSCAN

	19: Using Advanced Program-to-Program Communication
	Advanced Program-to-Program Communication (APPC)
	APPC Conversations
	LU6.2 Verb Set
	&APPC Verb
	Conversation States
	Conversation Processing
	Return Codes and System Variables

	Conversation Allocation
	Transaction Identifier
	Destination Selection
	Allocation and Sessions
	Set Program Initialization Parameters
	Allocation Completion

	Attach a Procedure
	Client/Server Terminology
	Execution Environment
	Access Program Initialization Parameters
	Attach Processing

	Send Operations
	Send Data
	Data Mapping Support
	Data Mapping for NCL Tokens
	Data Mapping and Mapping Services
	Send Data When Data Mapping Is Not Supported
	Request Confirmation of Data Sent
	Force Data Transmission
	Switch State from Send to Receive

	Receive Operations
	Receive Data
	Receive Data into NCL Tokens
	Receive Data into an MDO
	Respond to a Confirmation Request
	Receive a Send Indication
	Receive a Deallocation Indication

	Error Processing
	Conversation Deallocation
	Sample Conversations

	&APPC Return Code Information
	Application Design

	20: Advanced Program-to-Program Communication Extensions
	APPC Extended Verb Set
	APPC Transactions
	START Transaction-Remote Process Start
	Remote Procedure Call (RPC) Transaction
	ATTACH Transaction-Allocate a Procedure
	CONNECT Transaction-Connect to an Active Process

	APPC Client/Server Processing
	Server Processes
	Client/Server Connection Mode
	Automatic Connection Mode
	Notification Mode
	Rejection Mode

	Transfer a Conversation

	21: Using APPC to Communicate with Other Systems
	About APPC
	Transaction Programs and Conversations
	Conversations and Sessions
	Concurrent Conversations
	Share a Single Session
	Conversation Handling

	Session Polarity
	Conversation Types
	APPC Option Sets
	APPC Option Set Support

	Supported APPC Products

	Define APPC Links
	Define Dynamic APPC Links
	APPC Table Requirements
	How APPC Control Tables Interact

	Define APPC Tables
	Define a Transaction Control Table
	Define Transactions
	Define a Qualified Transaction
	Generic Transactions
	Specify a Default Destination
	Maintain TCT Definitions

	Define a Dynamic Link Table
	Specify an Option Set
	Maintain DLT Definitions

	Define an Option Set Control Table
	Nominate Mode Names
	Maintain OSCT Definitions

	Define a Mode Control Table
	VTAM Logmodes
	Specify Modes for Single Session Links
	Specify Modes for Parallel Session Links
	Default Modes
	Maintain MCT Definitions

	Implement Security for APPC Links
	Link Level Security
	Conversation Level Security
	Run a Secured Transaction
	Security Options

	Conversation Level Security and NCL Procedure Environments
	Specify Security for APPC Links with Remote Systems
	APPC Region Use

	Activate APPC Links
	Start Links Manually
	Deactivate Links Manually
	Start Links Automatically
	Session Initiation Requests
	External Logon Request
	External BIND Request
	Internal NCL Procedure Request
	How Session Establishment Works
	Single Session Links
	Parallel Session Links
	Session Selection for Conversations

	Deactivate Links Automatically

	APPC Link Definition Examples
	Run Conversations Within the Same Domain
	Run with Already Verified Security
	Run an APPC Link Between a Domain and a Remote LU
	Run a Qualified Transaction
	Run a Generic Transaction

	22: Program-to-Program Interface
	Uses of PPI
	CNMNETM Module
	Structure and Data Flow
	Interface Details
	&PPI Verb
	Return Codes, System Variables, and User Variables
	Determine PPI or Receiver Status
	Define the Process as a Registered PPI Receiver
	Send a Generic Alert
	Send Data to a Receiver
	Receive Data
	Deactivate the Receiver ID

	Access PPI Facilities
	Access PPI from NCL Processes
	NCL PPI System Variables
	NCL PPI User Variables

	Access PPI Facilities from Other Programs
	Make PPI Calls
	Construct an RPB

	Specify Sender and Receiver IDs
	Make the Call
	Sample PPI Calls

	Check PPI Status
	Control Receiver Programs
	Check the Status of a Receiver Program
	Obtain ASCB and TCB Addresses
	Define and Initialize a Receiver
	Deactivate a Receiver
	Delete an Active Receiver

	Send a Generic Alert
	Control Data Buffers
	Send a Data Buffer to a Receiver
	Allow a Receiver to Receive a Data Buffer
	Purge the Data Buffer

	Wait on an ECB
	Obtain a Unique Sender or Receiver ID
	Receive Information from a Receiver Program
	Trace the Cause of a Processing Error
	Debugging Codes

	23: &NDB Verbs, Built-in Functions, and System Variables
	&NDB Verb Summary
	Built-in Function Summary
	System Variable Summary
	Free-form Syntax

	A: NCL VSAM Techniques
	Initialization and ACB Open Processing
	Automatic Verification and Loading
	For Entry-Sequence Data Sets (ESDS)
	For Key-Sequenced Data Sets (KSDS)

	RPL Handling
	Obtain I/O Buffers
	Concurrent Access to Multiple UDBs
	Data Set Positioning and Generic Retrieval
	Release File Processing Resources
	Display File Information
	Control UDB Performance
	Offline Processing of Data Sets

	B: System Level Procedures: Message Profiles
	Use NCL Verbs to Retrieve Messages
	System Level Procedure Environments
	MSGPROC Viewed as a System Level Procedure
	&INTREAD: Dependent Processing Environment

	Message Handling and Processing by System Level Procedures
	Decide What to Do with a Message
	Message Profile
	Message Profile Variables

	&INTREAD Message Profile
	&LOGREAD Message Profile
	&MSGREAD Message Profile
	&PPOREAD Message Profile

	C: Sample APPC Conversations
	Sample Conversations Between Two Systems
	Source and Target NCL Procedures

	Run the Sample APPC Conversations
	Environment 1: Local Conversations
	Environment 2: Same LU Conversations
	Environment 3: Conversations Between Two Systems

	D: NDB Response Codes
	About Response Codes
	Error Information
	Response Codes

	E: Using Key Ranges with an NDB
	NDB Key Structure
	Storage of Values

	Suggested Key Ranges
	Other Considerations

	F: Using NCLEX01 for NDB Security
	NDB Open Exit Call Details

	G: Using the Batch Command Interface
	Batch Command Interface
	BCI Command Types
	BCI Input
	BCI Output
	BCILOGON Command--Establish Session
	BCIDISC Command--Terminate Session
	BCIEXITC Command--Control Command Exit
	BCI Operation
	Procedure $USERBCI
	Customize $USERBCI

	BCI Command Exit
	Return Codes

	JCL Return Codes

	H: Virtual 3270 Interface
	About the Virtual 3270 Interface
	Virtual 3270 Interface
	Control the Conversation
	Interface to NCL Procedures
	Panel Characteristics

	Index

